Advertisement

The European Physical Journal D

, Volume 51, Issue 3, pp 341–345 | Cite as

Monte Carlo simulations of the μCF processes kinetics in deuterium gas

  • A. Adamczak
  • M. P. Faifman
Atomic and Molecular Collisions Regular Article

Abstract

The kinetics of muon-catalyzed-fusion processes (μCF) in pure D2 gas have been studied by means of Monte Carlo simulations for various target temperatures and densities. In particular, the role of resonant and non-resonant ddμ formation in μCF has been investigated. It has been shown that non-resonant formation can be directly observed at very short times in the neutron time spectra from μCF for low-density D2 targets. The time spectra of neutrons from the low-temperature ortho-D2 and para-D2 gas targets have been calculated. These spectra display a strong ortho-para effect, which agrees with experimental results for the dilute-gas D2 targets.

PACS

34.50.-s Scattering of atoms and molecules 36.10.Dr Positronium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Leon, H.A. Bethe, Phys. Rev. 127, 636 (1962)Google Scholar
  2. D.J. Abbott et al., Phys. Rev. A 55, 214 (1997)Google Scholar
  3. R. Pohl et al., Hyperf. Interact. 138, 35 (2001)Google Scholar
  4. M.P. Faifman, L.I. Menshikov, Hyperf. Interact. 138, 61 (2001)Google Scholar
  5. T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 21, 271 (2002)Google Scholar
  6. L.I. Menshikov, L.I. Ponomarev, T.A. Strizh, M.P. Faifman, Zh. Eksp. Teor. Fiz. 92, 1173 (1987), Sov. Phys. JETP 65, 656 (1987)Google Scholar
  7. W.H. Breunlich, P. Kammel, J.S. Cohen, M. Leon, Annu. Rev. Nucl. Part. Sci. 39, 311 (1989)Google Scholar
  8. L.I. Ponomarev, Contemp. Phys. 31, 219 (1991)Google Scholar
  9. D.L. Demin et al., INTAS project Nr 05-1000008-7953 (2005)Google Scholar
  10. M. Bubak, M.P. Faifman, report JINR E4–87–464, Dubna (1987)Google Scholar
  11. L. Bracci et al., Muon Catal. Fusion 4, 247 (1989)Google Scholar
  12. A. Adamczak et al., At. Data Nucl. Data Tab. 62, 255 (1996)Google Scholar
  13. A. Adamczak, Phys. Rev. A 74, 042718 (2006)Google Scholar
  14. Y.B. Zeldovich, S.S. Gershtein, Usp. Fiz. Nauk 71, 581 (1960), Sov. Phys. Usp. 3, 593 (1961)Google Scholar
  15. E.A. Vesman, Pis’ma Zh. Eksp. Teor. Fiz. 5, 113 (1967), JETP Letters 5, 91 (1967)Google Scholar
  16. M.P. Faifman, Muon Catal. Fusion 4, 341 (1989)Google Scholar
  17. A.M. Lane, Phys. Lett. A 98, 337 (1983)Google Scholar
  18. M.P. Faifman, L.I. Menshikov, T.A. Strizh, Muon Catal. Fusion 4, 1 (1989)Google Scholar
  19. M. Leon, J.S. Cohen, Phys. Rev. A 31, 2680 (1985)Google Scholar
  20. D.V. Balin et al., report PNPI-2729, Gatchina (2007)Google Scholar
  21. P.C. Souers, Hydrogen Properties for Fusion Energy (University of California Press, Berkeley, 1986)Google Scholar
  22. A. Toyoda et al., Phys. Rev. Lett. 90, 243401 (2003)Google Scholar
  23. H. Imao et al., Phys. Lett. B 632, 192 (2006) and talk at the International Conference on Muon Catalyzed Fusion and Related Topics μCF-07, Dubna, 18–21 June, 2007Google Scholar
  24. H. Imao et al., Phys. Lett. B 658, 120 (2008)Google Scholar
  25. A. Adamczak, M.P. Faifman, Phys. Rev. A 64, 052705 (2001)Google Scholar
  26. A. Scrinzi et al., Phys. Rev. A 47, 4691 (1993)Google Scholar
  27. N.I. Voropaev et al., Hyperf. Interact. 138, 331 (2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Nuclear Physics, Polish Academy of SciencesKrakówPoland
  2. 2.Rzeszów Technical UniversityRzeszówPoland
  3. 3.Russian Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations