Advertisement

The European Physical Journal D

, Volume 52, Issue 1–3, pp 43–46 | Cite as

Photon-trap spectroscopy of size-selected free cluster ions: “direct” measurement of optical absorption of Ag+ 9

Structure and Thermodynamics of Free Clusters

Abstract

An absorption spectrum of size-selected free cluster ions has been measured “directly” via extinction of light without relying on photodepletion/dissociation spectroscopy. The novel technique employs an ion trap and an optical cavity; cluster ions stored in an ion trap interact with photons trapped in a cavity. The storage lifetime of photons in the cavity provides “direct” observation of extinction of light (photon-trap spectroscopy, which is a generalized scheme of cavity ring-down spectroscopy). The first measurement is performed on ultraviolet absorption of Ag9 +. Temperature dependence of the spectrum is presented by cooling the ion trap down to 10 K.

PACS

36.40.Mr Spectroscopy and geometrical structure of clusters 42.62.Fi Laser spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Terasaki (Feature article), J. Phys. Chem. A 111, 7671 (2007)Google Scholar
  2. A. Terasaki, T. Kondow, K. Egashira, J. Opt. Soc. Am. B 22, 675 (2005)Google Scholar
  3. K. Egashira, A. Terasaki, T. Kondow (Communication), J. Chem. Phys. 126, 221102 (2007)Google Scholar
  4. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)Google Scholar
  5. D. Gerlich, Adv. Chem. Phys. 82, 1 (1992)Google Scholar
  6. K.R. Asmis, M. Brümmer, C. Kaposta, G. Santambrogio, G. von Helden, G. Meijer, K. Rademann, L. Wöste, Phys. Chem. Chem. Phys. 4, 1101 (2002)Google Scholar
  7. O.V. Boyarkin, S.R. Mercier, A. Kamariotis, T.R. Rizzo, J. Am. Chem. Soc. 128, 2816 (2006)Google Scholar
  8. A. Terasaki, T. Majima, T. Kondow (Communication), J. Chem. Phys. 127, 231101 (2007)Google Scholar
  9. T. Majima, A. Terasaki, T. Kondow, Phys. Rev. A 77, 033417 (2008)Google Scholar
  10. M. Schmidt, Ch. Ellert, W. Kronmüller, H. Haberland, Phys. Rev. B 59, 10970 (1999)Google Scholar
  11. J. Tiggesbäumker, L. Köller, H.O. Lutz, K.-H. Meiwes-Broer, Chem. Phys. Lett. 190, 42 (1992)Google Scholar
  12. J. Tiggesbäumker, L. Köller, K.-H. Meiwes-Broer, A. Liebsch, Phys. Rev. A 48, R1749 (1993)Google Scholar
  13. T. Majima, A. Terasaki, G. Santambrogio, T. Kondow, unpublishedGoogle Scholar
  14. S. Krückeberg, G. Dietrich, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Ziegler, J. Chem. Phys. 110, 7216 (1999)Google Scholar
  15. T. Majima, C. Kasai, A. Terasaki, T. Kondow, unpublishedGoogle Scholar
  16. M.B. Knickelbein, W.J.C. Menezes, Phys. Rev. Lett. 69, 1046 (1992)Google Scholar
  17. B.A. Collings, K. Athanassenas, D. Lacombe, D.M. Rayner, P.A. Hackett, J. Chem. Phys. 101, 3506 (1994)Google Scholar
  18. S. Minemoto, A. Terasaki, T. Kondow, J. Chem. Phys. 104, 5770 (1996)Google Scholar
  19. B.A. Collings, K. Athanassenas, D.M. Rayner, P.A. Hackett, Chem. Phys. Lett. 227, 490 (1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Cluster Research Laboratory, Toyota Technological InstituteChibaJapan
  2. 2.East Tokyo Laboratory, Genesis Research InstituteChibaJapan

Personalised recommendations