The European Physical Journal D

, Volume 51, Issue 1, pp 51–61 | Cite as

Positron annihilation in large polyatomic molecules. The role of vibrational Feshbach resonances and binding

Dynamics of Bio Macromolecules

Abstract

We analyse the process of rapid positron annihilation in large polyatomic molecules due to positron capture into vibrational Feshbach resonances. Resonant annihilation occurs in molecules which can bind positrons, and we analyse positron binding to alkanes using zero-range potentials. Related questions of spectra of annihilation gamma quanta and molecular fragmentation following annihilation, are discussed briefly.

PACS

34.80.Uv Positron scattering 78.70.Bj Positron annihilation 71.60.+z Positron states 34.80.Gs Molecular excitation and ionization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Wahl, J.W. Buchanan, Principles and Practice of Positron Emission Tomography (Lippincott, Williams and Wilkins, Philadelphia, 2002)Google Scholar
  2. H. Müller, W. Enghardt, Phys. Med. Biol. 51, 1779 (2006); I. Pshenichnov, I. Mishustin, W. Greiner, Phys. Med. Biol. 51, 6099 (2006)Google Scholar
  3. R.M. Moadel et al., Cancer Res. 65, 698 (2005)Google Scholar
  4. Electron-Molecule Interactions and Their Applications, edited by L.G. Christophorou (Academic Press, New York, 1984)Google Scholar
  5. F. Martin, P.D. Burrow, Z. Cai, P. Cloutier, D. Hunting, L. Sanche, Phys. Rev. Lett. 93, 068101 (2004)Google Scholar
  6. P.A.M. Dirac, Proc. Roy. Soc. London 126, 360 (1930)Google Scholar
  7. C.D. Anderson, Phys. Rev. 43, 491 (1933)Google Scholar
  8. P.G. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000)Google Scholar
  9. S. Sazonov, E. Churazov, R. Sunyaev, M. Revnivtsev, J. Exp. Astron. 20, 15 (2005)Google Scholar
  10. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982)Google Scholar
  11. P.A. Fraser, Adv. At. Mol. Opt. Phys. 4, 63 (1968)Google Scholar
  12. M. Deutsch, Phys. Rev. 83, 866 (1951)Google Scholar
  13. D.A.L. Paul, L. Saint-Pierre, Phys. Rev. Lett. 11, 493 (1963)Google Scholar
  14. S.J. Tao, Phys. Rev. Lett. 14, 935 (1965)Google Scholar
  15. G.R. Heyland, M. Charlton, T.C. Griffith, G.L. Wright, Can. J. Phys. 60, 503 (1982)Google Scholar
  16. G.L. Wright, M. Charlton, T.C. Griffith, G.R. Heyland, J. Phys. B 18, 4327 (1985)Google Scholar
  17. C.M. Surko, A. Passner, M. Leventhal, F.J. Wysocki, Phys. Rev. Lett. 61, 1831 (1988); T.J. Murphy, C.M. Surko, Phys. Rev. Lett. 67, 2954 (1991)Google Scholar
  18. K. Iwata, R.G. Greaves, T.J. Murphy, M.D. Tinkle, C.M. Surko, Phys. Rev. A 51, 473 (1995)Google Scholar
  19. S.J. Gilbert, L.D. Barnes, J.P. Sullivan, C.M. Surko, Phys. Rev. Lett. 88, 043201 (2002)Google Scholar
  20. L.D. Barnes, S.J. Gilbert, C.M. Surko, Phys. Rev. A 67, 032706 (2003)Google Scholar
  21. L.D. Barnes, J.A. Young, C.M. Surko, Phys. Rev. A 74, 012706 (2006)Google Scholar
  22. J.A. Young, C.M. Surko, Phys. Rev. A 77, 052704 (2008)Google Scholar
  23. V.I. Goldanskii, Yu.S. Sayasov, Phys. Lett. 13, 300 (1964)Google Scholar
  24. P.M. Smith, D.A.L. Paul, Can. J. Phys. 48, 2984 (1970)Google Scholar
  25. G.K. Ivanov, Dokl. Akad. Nauk SSSR 291, 622 (1986), Dokl. Phys. Chem. 291, 1048 (1986); Chem. Phys. Lett. 135, 89 (1987)Google Scholar
  26. G.F. Gribakin, Phys. Rev. A 61, 022720 (2000)Google Scholar
  27. G.F. Gribakin, in New Directions in Antimatter Chemistry and Physics, edited by C.M. Surko and F.A. Gianturco (Kluwer Academic Publishers, Netherlands, 2001), p. 413Google Scholar
  28. G.F. Gribakin, P.M.W. Gill, Nucl. Instrum. Meth. B 221, 30 (2004)Google Scholar
  29. F.A. Gianturco, T. Mukherjee, A. Occhigrossi, Phys. Rev. A 64, 032715 (2001); A. Occhigrossi, F.A. Gianturco, J. Phys. B 36, 1383 (2003); J. Franz, F.A. Gianturco, Nucl. Instrum. Meth. B 247, 20 (2006)Google Scholar
  30. E.P. da Silva, J.S.E. Germano, M.A.P. Lima, Phys. Rev. A 49, R1527 (1994); M.T. do N. Varella, C.R.C. de Carvalho, M.A.P. Lima, Nucl. Instrum. Meth. B 192, 225 (2002)Google Scholar
  31. T. Nishimura, F.A. Gianturco, Phys. Rev. Lett. 90, 183201 (2003); Phys. Rev. A 72, 022706 (2005)Google Scholar
  32. V.A. Dzuba, V.V. Flambaum, W.A. King, B.N. Miller, O.P. Sushkov, Phys. Scr. T 46, 248 (1993)Google Scholar
  33. V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, W.A. King, J. Phys. B 29, 3151 (1996)Google Scholar
  34. V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, W.A. King, Phys. Rev. A 52, 4541 (1995)Google Scholar
  35. J. Mitroy, M.W.J. Bromley, G.G. Ryzhikh, J. Phys. B 35, R81 (2002)Google Scholar
  36. H. Chojnacki, K. Strasburger, Molec. Phys. 104, 2273 (2006)Google Scholar
  37. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd edn. (Pergamon, Oxford, 1977)Google Scholar
  38. J. Mitroy, I.A. Ivanov, Phys. Rev. A 65, 042705 (2002)Google Scholar
  39. G.F. Gribakin, C.M.R. Lee, Phys. Rev. Lett. 97, 193201 (2006)Google Scholar
  40. J.A. Young, G.F. Gribakin, C.M.R. Lee, C.M. Surko, Phys. Rev. A 77, 060702 (2008)Google Scholar
  41. J.A. Young, C.M. Surko, Phys. Rev. A 78, 032702 (2008)Google Scholar
  42. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, edited by P.J. Linstrom, W.G. Mallard, http://webbook.nist.gov/chemistry/Google Scholar
  43. J. Kong et al., J. Comput. Chem. 21, 1532 (2000)Google Scholar
  44. S.J. Gilbert, C. Kurz, R.G. Greaves, C.M. Surko, Appl. Phys. Lett. 70, 1944 (1997)Google Scholar
  45. J.A. Young, C.M. Surko, Phys. Rev. Lett. 99, 133201 (2007)Google Scholar
  46. A. Bohr, B. Mottelson, Nuclear Structure, Vol. 1 (World Scientific, Singapore, 1998), p. 434Google Scholar
  47. G.M. Stewart, J.D. McDonald, J. Chem. Phys. 78, 3907 (1983)Google Scholar
  48. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, C. Harabati, Phys. Rev. A 66, 012713 (2002)Google Scholar
  49. J.A. Young, C.M. Surko, Nucl. Instrum. Meth. B 266, 478 (2008)Google Scholar
  50. H. Hotop, M.-W. Ruf, M. Allan, I.I. Fabrikant, Adv. At. Mol. Opt. Phys. 49, 85 (2003)Google Scholar
  51. G.F. Gribakin, C.M.R. Lee, Nucl. Instrum. Meth. B 247, 31 (2006)Google Scholar
  52. Yu.N. Demkov, V.N. Ostrovsky, Zero-Range Potentials and their Applications in Atomic Physics (Plenum Press, New York, 1988)Google Scholar
  53. K. Iwata, R.G. Greaves, C.M. Surko, Phys. Rev. A 55, 3586 (1997)Google Scholar
  54. A. Passner, C.M. Surko, M. Leventhal, A.P. Mills, Jr. Phys. Rev. A 39, 3706 (1989); G.L. Glish, R.G. Greaves, S.A. McLuckey, L.D. Hulett, C.M. Surko, J. Xu, D.L. Donohue, Phys. Rev. A 49, 2389 (1994)Google Scholar
  55. L.D. Hulett, D.L. Donohue, J. Xu, T.A. Lewis, S.A. McLuckey, G.L. Glish, Chem. Phys. Lett. 216, 236 (1993); D.L. Donohue, L.D. Hulett, Jr., B.A. Eckenrode, S.A. McLuckey, G.L. Glish, Chem. Phys. Lett. 168, 37 (1990); J. Xu, L.D. Hulett, Jr., T.A. Lewis, D.L. Donohue, S.A. McLuckey, G.L. Glish, Phys. Rev. A 47, 1023 (1993); J. Xu, L.D. Hulett, T.A. Lewis, D.L. Donohue, S.A. McLuckey, O.H. Crawford, Phys. Rev. A 49, R3151 (1994); J. Xu, L.D. Hulett, Jr., T.A. Lewis, S.A. McLuckey, Phys. Rev. A 52, 2088 (1995); J. Moxom, D.M. Schrader, G. Laricchia, J. Xu, L.D. Hulett, Phys. Rev. A 62, 052708 (2000)Google Scholar
  56. O.H. Crawford, Phys. Rev. A 49, R3147 (1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsQueen’s UniversityNorthern IrelandUK

Personalised recommendations