Advertisement

The European Physical Journal D

, Volume 50, Issue 1, pp 45–52 | Cite as

Effect of sulphur doping on manganese clusters: an ab initio study

  • J. Mejía-López
  • J. Pinto
  • A. H. Romero
Clusters and Nanostructures

Abstract

We report a structural, electronic and magnetic analysis of minimal MnnS clusters, n = 1–13, from ab initio calculations. Total geometry optimizations were performed by considering compact manganese clusters, doped with a single sulphur atom. The doping was added to the cluster by considering substitution, interstitial and adsorbed positions. To further investigate the influence of the sulphur doping on the magnetic properties of manganese clusters, we performed non collinear magnetic calculations within the local spin density approximation (LSDA) for the exchange-correlation. We find that the electronic properties can be better controlled when the cluster is doped with a sulphur atom, and less size dependent. There are no differences in the magnetic properties of doped and non-doped clusters, except for n=7 and 8, in which the total magnetic moment per atom are smaller in doped clusters.

PACS

36.40.Cg Electronic and magnetic properties of clusters 75.75.+a Magnetic properties of nanostructures 75.50.Tt Fine-particle systems; nanocrystalline materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Science 272, 1323 (1996)Google Scholar
  2. M. Haruta, Catal. Today 36, 153 (1997)Google Scholar
  3. A. Sanchez, S. Abbet, U. Heiz, W.D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999)Google Scholar
  4. K.I. Sugawara, F. Sobott, A.B. Vakhtin, J. Chem. Phys. 118, 7808 (2003)Google Scholar
  5. X. Ding, Z. Li, J. Yang, J.G. Hou, Q. Zhu, J. Chem. Phys. 121, 2558 (2004)Google Scholar
  6. C. Majumder, H. Mizuseki, Y. Kawazoe, J. Chem. Phys. 118, 9809 (2003)Google Scholar
  7. P.J. Ziemann, A.W. Castleman, Phys. Rev. B 46, 13480 (1992)Google Scholar
  8. M.B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001)Google Scholar
  9. M.B. Knickelbein, Phys. Rev. B 70, 014424 (2004)Google Scholar
  10. S.N. Khanna, B.K. Rao, P. Jena, M. Knickelbein, Chem. Phys. Lett. 378, 374 (2003)Google Scholar
  11. G.L. Gutsev, M.D. Mochena, C.W. Bauschlicher, J. Phys. Chem. A 110, 9758 (2006)Google Scholar
  12. Y.N. Xie, J.A. Blackman, Phys. Rev. B 73, 214436 (2006)Google Scholar
  13. M. Kabir, A. Mookerjee, D.G. Kanhere, Phys. Rev. B 73, 224439 (2006)Google Scholar
  14. D. Chu, G.G. Kenning, R. Orbach, Phys. Rev. Lett. 72, 3270 (1994)Google Scholar
  15. E. Dagotto, in The Physics of Manganites and Related Compounds, Springer Series in Solid-State Sciences, Vol. 136 (2003)Google Scholar
  16. J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996)Google Scholar
  17. W. Wensdorfer, N. Aliaga-Alcalde, D.N. Hendrickson, G. Christou, Nature 416, 406 (2002)Google Scholar
  18. R. Sessoli, D. Gatteschi, A. Caneshi, M.A. Novak, Nature 365, 141 (1993)Google Scholar
  19. K.M. Mertes, Y. Suzuki, M.P. Sarachik, Y. Myasoedov, H. Shtrikman, E. Zeldov, E.M. Rumberger, D.N. Hendrickson, G. Christou, Solid State Commun. 127, 131 (2003)Google Scholar
  20. C.A. Baumann, R.J. Van Zee, S.V. Bhat, W. Weltner, J. Chem. Phys. 78, 190 (1983)Google Scholar
  21. J.R. Lombardi, B. Davids, Chem. Rev. 102, 2431 (2002)Google Scholar
  22. S.Y. Yin, R. Moro, X.S. Xu, W.A. de Heer, Phys. Rev. Lett. 98, 113401 (2007)Google Scholar
  23. M. Kabir, D.G. Kanhere, A. Mookerjee, Phys. Rev. B 73, 075210 (2006)Google Scholar
  24. M. Kabir, D.G. Kanhere, A. Mookerjee, Phys. Rev. B 75, 214433 (2007)Google Scholar
  25. J. Mejía-López, A.H. Romero, M.E. Garcia, J.L. Morán-López, Phys. Rev. B 74, 140405(R) (2006)Google Scholar
  26. Y.S. Ma, H.C. Yao, W.J. Hua, S.H. Li, Y.Z. Li, L.M. Zheng, Inorg. Chim. Acta 360, 1645 (2007)Google Scholar
  27. S. Mukhopadhyay, S.K. Mandal, S. Bhaduri, W.H. Armstrong, Chem. Rev. 104, 3981 (2004)Google Scholar
  28. J. Mejía-López, A.H. Romero, M.E. Garcia, J.L. Morán-López, Phys. Rev. B 78, 1 (2008)Google Scholar
  29. R.J. Van Zee, C.A. Baumann, S.V. Bhat, W. Weltner, J. Chem. Phys. 76, 5636 (1982)Google Scholar
  30. V.S. Stepanyuk, L. Niebergall, R.C. Longo, W. Hergert, P. Bruno, Phys. Rev. B 70, 075414 (2004)Google Scholar
  31. J.M. Seminario, C.E. De La Cruz, P.A. Derosa, J. Am. Chem. Soc. 123, 5616 (2001)Google Scholar
  32. C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205347 (2006)Google Scholar
  33. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Adv. Mater. 15, 1881 (2003)Google Scholar
  34. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. B 215, 809 (1999)Google Scholar
  35. 1.60 and 1.60 a.u. has been used for S, with an electronic configuration of 3s23p4 and 1.50, 1.50 and 1.30 a.u. has been used for Mn with an electronic configuration 3s23p63d5 Google Scholar
  36. L.M. Sandratskii, P.G. Guletskii, J. Phys. F: Metal Phys. 16, L43 (1986)Google Scholar
  37. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  38. R.G. Parr, W. Yang, Am. Chem. Soc. 106, 4049 (1984)Google Scholar
  39. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Pontificia Universidad Católica de Chile, Facultad de FísicaSantiago 22Chile
  2. 2.CINVESTAV Unidad Querétaro, Libramiento Norponiente No. 2000QuerétaroMexico

Personalised recommendations