The European Physical Journal D

, Volume 49, Issue 3, pp 373–377 | Cite as

Solitary wave propagation in quantum electron-positron plasmas

Article

Abstract

Existence of large amplitude stationary solitary wave structures in an unmagnetized electron-positron (e-p) plasma is studied using a quantum hydrodynamic (QHD) model that includes the quantum force (tunnelling) associated with the Bohm potential and the Fermi-dirac pressure law. It is found that in a quasi-neutral pair (e-p) plasma, where the dispersion is only due to the the quantum tunnelling effects, the large amplitude stationary solitary structure exists only when the normalized Mach speed,M <√2. Such solitary structures do not exist in absence of the Bohm potential term in an unmagnetized quasineutral pair (e-p) plasma. The system is shown to support only rarefactive stationary solitary waves. For such waves the amplitude, being independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), decreases with the Mach number M, whereas the width increases with both M and H. The present theory is applicable to analyze the formation of localized coherent solitary structures at quantum scales in dense astrophysical objects as well as in intense laser fields.

PACS

52.27.Ep Electron-positron plasmas 52.35.Fp Electrostatic waves and oscillations (e.g., ionacoustic waves) 52.35.Sb Solitons; BGK modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Curtis Michel, The Theory of Neutron Stars Magnetospheres (Univ. Chicago Press, Chicago, 1991); A. Hewish, Ann. Rev. Astron. Astrophys. 8, 265 (1970)Google Scholar
  2. 2.
    H.R. Miller, P.J. Witta, Active Galactic Nuclei (Springer Verlag, Berlin, 1987), p. 202; P. Goldreich, W.H. Julian, Astrophys. J. 157, 869 (1969)Google Scholar
  3. 3.
    F.C. Michel, Rev. Mod. Phys. 54, 1 (1982)CrossRefADSGoogle Scholar
  4. 4.
    M.J. Rees, Nature 229, 312 (1971)CrossRefADSGoogle Scholar
  5. 5.
    M.L. Burns, Positron-Electron Pairs in Astrophysics (American Institute of Physics, New York, 1983)Google Scholar
  6. 6.
    V. Berezhiani, D.D. Tskhakaya, P.K. Shukla, Phys. Rev. A 46, 6608 (1992)CrossRefADSGoogle Scholar
  7. 7.
    P. Helander, D.J. Ward, Phys. Rev. Lett. 90, 135004 (2003)CrossRefADSGoogle Scholar
  8. 8.
    E.M. Campbell, W.J. Hogan, Plasma Phys. Contr. Fusion 41, B39 (1999)CrossRefGoogle Scholar
  9. 9.
    V. Tsytovich, C.B. Wharton, Comments Plasma Phys. Contr. Fusion 4, 91 (1978)Google Scholar
  10. 10.
    A.P. Misra, Phys. Plasmas 14, 064501 (2007); K. Roy, A.P. Misra, P. Chatterjee, Phys. Plasmas 15, 032310 (2008)CrossRefADSGoogle Scholar
  11. 11.
    F.T. Gratton, G. Gnavi, R.M.O. Galvão, L. Gomberoff, Phys. Rev. E 55, 3381 (1997)CrossRefADSGoogle Scholar
  12. 12.
    P.K. Shukla, N.N. Rao, M.Y. Yu, N.L. Tsintsadze, Phys. Rep. 138, 1 (1986)CrossRefADSGoogle Scholar
  13. 13.
    D. Kremp, T. Bornath, M. Bonitz, M. Schlanges, Phys. Rev. E 60, 4725 (1999); H. Haberland, M. Bonitz, D. Kremp, Phys. Rev. E 64, 026405 (2001); M. Bonitz, V.S. Filinov, V.E. Fortov, P.R. Levashov, H. Fehske, Phys. Rev. Lett. 95, 235006 (2005); Y.F. Jung, Phys. Plasmas 8, 3842 (2001)CrossRefADSGoogle Scholar
  14. 14.
    F. Haas, G. Manfredi, J. Goedert, Phys. Rev. E 64, 026413 (2001); F. Haas, L.G. Garcia, J. Goedert, G. Manfredi, Phys. Plasmas 10, 3858 (2003)CrossRefADSGoogle Scholar
  15. 15.
    B. Shokri, A.A. Rukhadze, Phys. Plasmas 6, 3450 (1999)CrossRefADSGoogle Scholar
  16. 16.
    P.K. Shukla, S. Ali, L. Stenflo, M. Marklund, Phys. Plasmas 13, 112111 (2006); S. Ali, P.K. Shukla, Phys. Plasmas 13, 052113 (2006); P.K. Shukla, S. Ali, Phys. Plasmas 13, 082101 (2006)CrossRefADSGoogle Scholar
  17. 17.
    P.K. Shukla, L. Stenflo, New J. Phys. 8, 111 (2006)Google Scholar
  18. 18.
    F. Haas, Phys. Plasmas 12, 062117 (2005); W.F. El-Taibani, M. Wadati, Phys. Plasmas 14, 042302 (2007)CrossRefADSGoogle Scholar
  19. 19.
    A.P. Misra, A. Roy Chowdhury, Phys. Plasmas 13, 072305 (2006); W.M. Moslem, P.K. Shukla, S. Ali, R. Schlickeiser, Phys. Plasmas 14, 042107 (2007); S. Ali, W.M. Moslem, I. Kourakis, P.K. Shukla, New J. Phys. 10, 023007 (2008)CrossRefADSGoogle Scholar
  20. 20.
    A.P. Misra, C. Bhowmik, Phys. Lett. A 369, 90 (2007); A.P. Misra, C. Bhowmik, Phys. Plasmas 14, 012309 (2007)CrossRefADSGoogle Scholar
  21. 21.
    P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 96, 245001 (2006); P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 99, 096401 (2007); D. Shaikh, P.K. Shukla, Phys. Rev. Lett. 99, 12502 (2007)CrossRefADSGoogle Scholar
  22. 22.
    F. Haas, G. Manfredi, Phys. Rev. E 62, 2764 (2000)CrossRefADSGoogle Scholar
  23. 23.
    A.P. Misra, P.K. Shukla, C. Bhowmik, Phys. Plasmas 14, 082309 (2007); A.P. Misra, P.K. Shukla, Phys. Plasmas 14, 082312 (2007); C. Bhowmik, A.P. Misra, P.K. Shukla, Phys. Plasmas 14, 122107 (2007)CrossRefADSGoogle Scholar
  24. 24.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Oxford University Press, Oxford, 1998)Google Scholar
  25. 25.
    G. Manfredi, Fields Inst. Commun. 46, 263 (2005)MathSciNetGoogle Scholar
  26. 26.
    G. Chabrier, D. Saumon, A.Y. Potekhin, J. Phys. A 39, 4411 (2006); D. Lai, Rev. Mod. Phys. 73, 629 (2001); M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006); A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006)CrossRefADSGoogle Scholar
  27. 27.
    S.V. Bulanov, T. Esirkepov, T. Tajima, Phys. Rev. Lett. 91, 085001 (2003); S.V. Bulanov, T. Esirkepov, T. Tajima, Phys. Rev. Lett. 91, 085001 (2003) (erratum)CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Mathematics, Siksha BhavanaVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations