Advertisement

The European Physical Journal D

, Volume 49, Issue 3, pp 361–371 | Cite as

Cherenkov radiation by the charged particle moving in moving Hermitian medium

  • Y. X. Zhang
  • Y. Yan
  • M. Hu
  • R. Zhong
  • S. G. Liu
Article
  • 51 Downloads

Abstract

Detailed theoretical investigation and computer calculations on the Cherenkov radiation (CR) in moving Hermitian medium (CRMH) are presented in this paper. It has been found that, similar to that in stationary Hermitian medium (CRH) case, there are two modes in the CRMH; in general, only one of them is radiative mode, another one is local field, and the comparison of the two modes is given in the paper. The small absorption of CRMH mainly results in the Gaussian-like field intensity pattern. And the group velocity in the CRMH is always slower than the phase velocity in the moving HM, so the fine inner structure occurs. Comparing the behaviors of CRMH and CRH, we have found that the movement of the Hermitian medium (HM) brings significant influences on the CR, so there are some interesting characteristics of CRMH, such as in the CRMH; the radiation power of the “o” mode is much higher than that of “e” mode. And because of the relativistic Doppler effect, the frequency region where both modes are radiative becomes quite different from that for CRH.

PACS

41.60.Bq Cherenkov radiation 47.27.ef Field-theoretic formulations and renormalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A. Cherenkov, Dokl. Akad. Nauk. SSSR 2, 451 (1934)Google Scholar
  2. 2.
    H.S. Uhm, J. Appl. Phys. 52, 6533 (1981)CrossRefADSGoogle Scholar
  3. 3.
    N. Engheta, S. Bassiri, J. Appl. Phys. 68, 4393 (1990)CrossRefADSGoogle Scholar
  4. 4.
    S.Y. Park, J.L. Hirshfield, Phys. Rev. E 62, 1266 (2000)CrossRefADSGoogle Scholar
  5. 5.
    T.E. Stevens, J.K. Wahlstrand, J. Kuhl, R. Merlin, Science 29, 627 (2001)CrossRefADSGoogle Scholar
  6. 6.
    G.N. Afanasiev, V.G. Kartavenko, V.P. Zrelov, Phys. Rev. E 68, 066501 (2003)CrossRefADSGoogle Scholar
  7. 7.
    A. Delbart, J. Derré, R. Chipaux, Eur. Phys. J. D 2, 109 (1998)CrossRefADSGoogle Scholar
  8. 8.
    J. Yoshii, C.H. Lai, T. Katsouleas, Phys. Rev. Lett. 79, 4194 (1997)CrossRefADSGoogle Scholar
  9. 9.
    M.I. Bakunov, S.B. Bodrov, A.V. Maslov, A.M. Sergeev, Phys. Rev. E 70, 016401 (2004)CrossRefADSGoogle Scholar
  10. 10.
    I. Carusotto, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 87, 064801 (2001)CrossRefADSGoogle Scholar
  11. 11.
    I.J. Owens, J.H. Brownell, J. Appl. Phys. 97, 104915 (2005)CrossRefADSGoogle Scholar
  12. 12.
    S. Liu et al., J. Appl. Phys. 102, 044901 (2007)CrossRefADSGoogle Scholar
  13. 13.
    I. de la Fuente, P.J.M. van der Slot, K.-J. Boller, J. Appl. Phys. 100, 053108 (2006)CrossRefADSGoogle Scholar
  14. 14.
    S.G. Liu, Y. Yang, M. Jie, D.M. Manos, Phys. Rev. E 65, 036411 (2002)CrossRefADSGoogle Scholar
  15. 15.
    J.A. Kong, IEEE Microwave Theory Tech. 16, 99 (1968)CrossRefGoogle Scholar
  16. 16.
    N.D.S. Gupta, J. Phys. A 1, 340 (1968)CrossRefADSGoogle Scholar
  17. 17.
    B.M. Bolotovskiĭ et al., Sov. Phys. Usp. 35, 143 (1992)CrossRefGoogle Scholar
  18. 18.
    J.F. McKenzie, Proc. Phys. Soc. 91, 537 (1967)CrossRefGoogle Scholar
  19. 19.
    K. Nakagawa, IEEE Trans. Antennas Prop. 28, 65 (1980)CrossRefADSGoogle Scholar
  20. 20.
    L. Shenggang, Z. Dajun, Y. Yang, J.K. Lee, Millimeter Wave and Far Infrared Science and Technology, in Proceedings 4th International Conference (1996), pp. 6–12Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Y. X. Zhang
    • 1
  • Y. Yan
    • 1
  • M. Hu
    • 1
  • R. Zhong
    • 1
  • S. G. Liu
    • 1
  1. 1.Research Institute of High Energy ElectronicsUniversity of Electronics Science and Technology of ChinaChengduP.R. China

Personalised recommendations