The European Physical Journal D

, Volume 47, Issue 3, pp 403–412 | Cite as

Analytic characterization of a resonance surface in an experimental ECR setup

Plasma Physics

Abstract.

In this work we give a detailed description of some quantities related to the ECR phenomenon in a typical ion source. In particular, we describe the ECR surface area, the volume associated with the resonance space, and their dependence with respect to the frequency of the electromagnetic wave feeding the source. These are useful in the study of the experimental results observed in the ion sources with respect to the frequency of the incoming electromagnetic wave. Moreover, promising techniques for the increasing of the source performances consider the frequency tuning of the supplied electromagnetic wave, as well as the use of broadband microwave radiation for the apparatus feeding. The theoretical modelling used to describe these techniques by a statistical approach requires the efficiency of the ECR process and its dependence on frequency to be taken into account. In this context, the knowledge and formalization of the quantities described here can be very important.

PACS.

52.50.Sw Plasma heating by microwaves; ECR, collisional heating 29.25.Ni Ion sources: positive and negative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Girard, D. Hitz, G. Melin, K. Serebrennikov, Rev. Sci. Instrum. 75, 1381 (2004) CrossRefADSGoogle Scholar
  2. V.L. Erukhimov, V.E. Semenov, Plasma Phys. Rep. 27, 988 (2001) CrossRefGoogle Scholar
  3. R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas (IOP Publishing Bristol and Philadelphia, 1996) Google Scholar
  4. G.D. Shirkov, Plasma Sources Sci. Technol. 2, 250 (1993) CrossRefADSGoogle Scholar
  5. F. Consoli, A.V. Philippov, G.D. Shirkov, S. Gammino, G. Ciavola, L. Celona, D. Mascali, F. Maimone, Proceedings of the 33rd European Physical Society Conference on Plasma Physics, 19–23 June 2006, Rome, Italy Google Scholar
  6. A.V. Philippov, G.D. Shirkov, F. Consoli, S. Gammino, G. Ciavola, L. Celona, S. Barbarino, Model for Calculation of Ion Charge-State Distribution in ECR ion source plasma, submitted to Proceedings of SPIE Google Scholar
  7. Y.K. Batygin, J. Appl. Phys. 83, 684 (1998) CrossRefADSGoogle Scholar
  8. L. Celona, G. Ciavola, F. Consoli, S. Gammino, F. Maimone, P. Spädtke, K. Tinschert, R. Lang, J. Mäder, J. Roßbach, S. Barbarino, R.S. Catalano, D. Mascali, Rev. Sci. Instrum. 79, 023305 (2008) CrossRefADSGoogle Scholar
  9. F. Consoli, L. Celona, G. Ciavola, S. Gammino, F. Maimone, R.S. Catalano, S. Barbarino, D. Mascali, L. Tumino, Proceedings of the 7th Mediterranean Microwave Symposium, 14–16 May 2007, Budapest, Hungary, p. 345 Google Scholar
  10. F. Consoli, L. Celona, G. Ciavola, S. Gammino, F. Maimone, S. Barbarino, R.S. Catalano, D. Mascali, Rev. Sci Instrum. 79, 02A308 (2008) CrossRefGoogle Scholar
  11. Z.Q. Xie, C.M. Lyneis, Rev. Sci. Instrum. 66, 4218 (1995) CrossRefADSGoogle Scholar
  12. G.D. Alton, F.W. Meyer, Y. Liu, J.R. Beene, D. Tucker, Rev. Sci. Instrum. 69, 2305 (1998) CrossRefADSGoogle Scholar
  13. Y. Kaway, G.D. Alton, O. Tarvanien, P. Suominen, H. Koivisto, Rev. Sci. Instrum. 77, 03A331 (2006) Google Scholar
  14. C.K. Birsdall, A.B. Langdon, Plasma Physics via Computer Simulation (A. Higler, Series on Plasma Physics, 1995) Google Scholar
  15. G. Shirkov, V. Alexandrov, V. Preisendorf, V. Shevtsov, R. Komissarov, M. Koryovkina, V. Mironov, E. Shirkova, O. Strekalovsky, N. Tokareva, A. Tuzikov, V. Vatulin, E. Vasina, V. Fomin, A. Anisimov, R. Veselov, A. Golubev, S. Grushin, V. Povyshev, A. Sadovoi, E. Donskoi, V. Shevelko, T. Nakagawa, Y. Yano, Physical and numerical basement of ECR plasma simulation with Particle-In-Cell model, Preprint RIKEN, RIKEN-AF-AC-24 (2000) Google Scholar
  16. G. Shirkov, V. Alexandrov, V. Preisendorf, V. Shevtsov, A. Filippov, R. Komissarov, V. Mironov, E. Shirkova, O. Strekalovsky, N. Tokareva, A. Tuzikov, V. Vatulin, E. Vasina, V. Fomin, A. Anisimov, R. Veselov, A. Golubev, S. Grushin, V. Povyshev, A. Sadovoi, E. Donskoi, V. Shevelko, T. Nakagawa, Y. Yano, Rev. Sci. Instrum. 73, 644(2002) CrossRefADSGoogle Scholar
  17. G. Shirkov, Nucl. Instrum. Meth. Phys. Res. A 558, 317 (2006) CrossRefADSGoogle Scholar
  18. S. Gammino, G. Ciavola, Rev. Sci. Instrum. 71 631(2000) Google Scholar
  19. A.I. Morozov, L.S. Soloviev, Voprosy Teorii Plazmy 2, 3 (1963) Google Scholar
  20. W. Rudin, Principles of Mathematical Analysis (McGraw-Hill Publishing, 1976) Google Scholar
  21. Y. Kaway, G.D. Alton, Y. Liu, Proceedings of the Particle Accelerator Conference 2005, PAC05, 16-20 May 2005, Knoxville, Tennesee, USA, 1529 Google Scholar
  22. L. Celona, F. Consoli, Study about the definition of a high power, large bandwidth device working around the 28 GHz frequency, for feeding the new generation Electron Cyclotron Resonance Ion Sources, INFN-LNS Report (December 2007) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Informatica e delle TelecomunicazioniUniversità degli Studi di CataniaCataniaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del SudCataniaItaly
  3. 3.Dipartimento di Fisica e AstronomiaUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations