Advertisement

The European Physical Journal D

, Volume 47, Issue 1, pp 7–10 | Cite as

Stark broadening of isolated lines: calculation of the diagonal multiplet factor for complex configurations (n1l1 n n2l2 m n3l3 p)

  • W. F. Mahmoudi
  • N. Ben Nessib
  • S. Sahal-Bréchot
Atomic Physics

Abstract.

Owing to the increasing sensitivity of detectors, accurate line profiles are needed for accurate stellar atmospheres modelling and for laboratory and technological plasmas as well. So, Stark broadening parameters of isolated lines of complex atoms and ions within the impact and quasistatic approximation are needed, even if the atomic abundance of the considered element is low. Angular factors of the diagonal line strength entering the quadrupole term appearing in the semi-classical expression of the width of line broadened by electron or ion perturbers, are needed. The aim of this paper is to extend the previous calculations of this diagonal multiplet factor which were obtained for configurations of the type ln and l1 nl2 m to more complex configurations in LS coupling. To study the Stark broadening of isolated lines in the impact and quasistatic approximation, we use the semi-classical-perturbation treatment, including both dipole and quadrupole contribution in the expansion of the electrostatic interaction between the optical electron and the perturber. We also use the Fano-Racah algebra. Angular factors of the diagonal line strength entering the quadrupole term appearing in the semi-classical expression of the width of line broadened by electron or ion perturbers, are calculated. New diagonal multiplet factor formulae for more complicated configurations such as (n1l1 n(LnSn)n2l2 m(LmSm)n3l3 p(LpSp)) are provided. These formulae can enter the computer Stark semi-classical perturbation codes.

PACS.

31.10.+z Theory of electronic structure, electronic transitions, and chemical binding 31.15.Md Perturbation theory 32.70.Jz Line shapes, widths, and shifts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sahal-Bréchot, Astron. Astrophys. 1, 91 (1969) ADSGoogle Scholar
  2. S. Sahal-Bréchot, Astron. Astrophys. 2, 322 (1969) ADSGoogle Scholar
  3. S. Sahal-Bréchot, Astron. Astrophys. 35, 319 (1974) ADSGoogle Scholar
  4. S. Sahal-Bréchot, Astron. Astrophys. 245, 322 (1991) ADSGoogle Scholar
  5. W.F. Mahmoudi, N. Ben Nessib, S. Sahal-Bréchot, Phys. Scr. 70, 142 (2004) CrossRefADSGoogle Scholar
  6. B.W. Shore, D.H. Menzel, Principles of Atomic Spectra (Wileys and Sons, New York, London and Sydney, 1968) Google Scholar
  7. E. Dekker, Astron. Astrophys. 1, 72 (1969) ADSGoogle Scholar
  8. A. de Shalit, I. Talmi, Nuclear Shell Theory (Academic Press, New York and London, 1963) Google Scholar
  9. The Opacity Project (compiled by the Opacity Project Team, Institute of physics Publ., Bristol, UK, 1995), Vol. 1 Google Scholar
  10. W. Cunto, C. Mendoza, F. Ochsenbein, C.J. Zeippen, Astron. Astrophys. 275, L5 (1993) Google Scholar
  11. C.J. Zeippen, Phys. Scr. T 58, 43 (1995) CrossRefADSGoogle Scholar
  12. Ph. Rivière, J. Quant. Spectr. Rad. Trans. 73, 91 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • W. F. Mahmoudi
    • 1
  • N. Ben Nessib
    • 2
  • S. Sahal-Bréchot
    • 3
  1. 1.Groupe de Recherche en Physique Atomique et Astrophysique, Faculté des Sciences de BizerteZarzounaTunisia
  2. 2.Groupe de Recherche en Physique Atomique et Astrophysique, Institut National des Sciences Appliqu ées et de TechnologieTunis CedexTunisia
  3. 3.Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique, Observatoire de Paris, Section de Meudon, UMR CNRS 8112Meudon CedexFrance

Personalised recommendations