Advertisement

The European Physical Journal D

, Volume 44, Issue 2, pp 389–400 | Cite as

Thermal entanglement of two interacting qubits in a static magnetic field

Quantum Optics and Quantum Information

Abstract.

We study systematically the entanglement of a two-qubit Heisenberg XY model in thermal equilibrium in the presence of an external arbitrarily-directed static magnetic field, thereby generalizing our prior work [G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)]. We show that a magnetic field having a component in the xy-plane containing the spin-spin interaction components produces different entanglement for ferromagnetic (FM) and antiferromagnetic (AFM) couplings. In particular, quantum phase transitions induced by the magnetic field-driven level crossings always occur for the AFM-coupled qubits, but only occur in FM-coupled qubits when the coupling is of Ising type or when the magnetic field has a component perpendicular to the xy-plane. When the magnetic field has a component in the xy-plane, the cut-off temperature above which the entanglement of both the FM- and AFM-coupled qubits vanishes can always be controlled using the magnetic field for any value of the XY coupling anisotropy parameter. Thus, by adjusting the magnetic field, an entangled state of two spins can be produced at any finite temperature. Finally, we find that a higher level of entanglement is achieved when the in-plane component of the magnetic field is parallel to the direction in which the XY exchange coupling is smaller.

PACS.

03.65.Ud Entanglement and quantum nonlocality 03.67.-a Quantum information 03.67.Mn Entanglement production, characterization, and manipulation 75.10.Jm Quantized spin models 

QICS

03.40.+t Thermal/mixed state entanglement 04.10.+s Entanglement in spin models 04.30.+p Entanglement in quantum phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991) MATHCrossRefADSGoogle Scholar
  2. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993) MATHCrossRefADSGoogle Scholar
  3. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000) CrossRefADSGoogle Scholar
  4. F. Verstraete, M. Popp, J.I. Cirac, Phys. Rev. Lett. 92, 027901 (2004) CrossRefADSGoogle Scholar
  5. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996) CrossRefADSGoogle Scholar
  6. A. Peres, Phys. Rev. Lett. 77, 1413 (1996) MATHCrossRefADSGoogle Scholar
  7. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997) MATHCrossRefADSGoogle Scholar
  8. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998) MATHCrossRefADSGoogle Scholar
  9. E.M. Rains, Phys. Rev. A 60, 173 (1999); E.M. Rains, Phys. Rev. A 60, 179 (1999) CrossRefADSGoogle Scholar
  10. A.F. Abouraddy, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Phys. Rev. A 64, 050101(R) (2001) CrossRefADSGoogle Scholar
  11. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998); G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999) CrossRefADSGoogle Scholar
  12. A. Imamo\(\overline{\mbox g}\)lu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999) CrossRefADSGoogle Scholar
  13. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001) CrossRefADSGoogle Scholar
  14. R. Skomski, A.Y. Istomin, A.F. Starace, D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004) CrossRefADSGoogle Scholar
  15. R. Skomski, J. Zhou, A.Y. Istomin, A.F. Starace, D.J. Sellmyer, J. Appl. Phys. 97, 10R511 (2005) Google Scholar
  16. B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000); B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 6366 (2000) CrossRefADSGoogle Scholar
  17. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001), Appendix A CrossRefADSGoogle Scholar
  18. W.K. Wootters, e-print arXiv:quant-ph/0001114; K.M. O'Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001) CrossRefADSGoogle Scholar
  19. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001) CrossRefADSGoogle Scholar
  20. X. Wang, Phys. Rev. A 64, 012313 (2001) CrossRefADSGoogle Scholar
  21. X. Wang, Phys. Lett. A 281, 101 (2001) MATHCrossRefADSGoogle Scholar
  22. D. Gunlycke, V.M. Kendon, V. Vedral, S. Bose, Phys. Rev. A 64, 042302 (2001) CrossRefADSGoogle Scholar
  23. T.J. Osborne, M.A. Nielsen, e-print arXiv:quant-ph/0202162 Google Scholar
  24. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002) CrossRefADSGoogle Scholar
  25. G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002) CrossRefADSGoogle Scholar
  26. J.S. Pratt, Phys. Rev. Lett. 93, 237205 (2004) CrossRefADSGoogle Scholar
  27. M. Asoudeh, V. Karimipour, Phys. Rev. A 71, 022308 (2005) CrossRefADSGoogle Scholar
  28. G.F. Zhang, S.S. Li, Phys. Rev. A 72, 034302 (2005) CrossRefADSGoogle Scholar
  29. R. Zhang, S.Q. Zhu, Phys. Lett. A 348, 110 (2006) CrossRefADSGoogle Scholar
  30. N. Canosa, R. Rossignoli, Phys. Rev. A 73, 022347 (2006) CrossRefADSGoogle Scholar
  31. C.X. Li, C.Z. Wang, G.C. Guo, Opt. Commun. 260, 741 (2006) CrossRefADSGoogle Scholar
  32. X.H. Peng, J.F. Du, D. Suter, Phys. Rev. A 71, 012307 (2005) CrossRefADSGoogle Scholar
  33. D. Mozyrsky, V. Privman, M.L. Glasser, Phys. Rev. Lett. 86, 5112 (2001) CrossRefADSGoogle Scholar
  34. A. Sørensen, K. Mølmer, Phys. Rev. Lett. 83, 2274 (1999) CrossRefADSGoogle Scholar
  35. Z.C. Kao, J. Ng, Y. Yeo, Phys. Rev. A 72, 062302 (2005) CrossRefADSGoogle Scholar
  36. Y. Yeo, T.Q. Liu, Y.E. Lu, Q.Z. Yang, J. Phys. A: Math. Gen. Phys. 38, 3235 (2005) MATHCrossRefGoogle Scholar
  37. X. Wang, Phys. Rev. A 66, 034302 (2002) CrossRefADSGoogle Scholar
  38. Y.F. Wang, J.P. Cao, Y.P. Wang, Phys. Lett. A 342, 375 (2005) CrossRefGoogle Scholar
  39. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997) CrossRefADSGoogle Scholar
  40. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  41. Note that in their investigation of the Heisenberg-Ising case described by the Hamiltonian H=2Bx(S1 x+S2 x)+8S1 zS2 z, the authors of reference gunlyc mentioned the difficulty of obtaining analytic expressions for the concurrence. However, using the eigenstate basis approach described here, one can derive analytic expressions for the corresponding λi's Google Scholar
  42. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 1999); S. Sachdev, Phys. World 12, 33 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • G. Lagmago Kamta
    • 1
  • A. Y. Istomin
    • 2
  • A. F. Starace
    • 2
  1. 1.Laboratoire de Chimie Théorique, Faculté des Sciences, Université de SherbrookeQuebecCanada
  2. 2.Department of Physics and AstronomyThe University of Nebraska, 116 Brace LaboratoryLincolnUSA

Personalised recommendations