Advertisement

The European Physical Journal D

, Volume 44, Issue 2, pp 367–370 | Cite as

Planarity and stability of shock driven directly by the ninth laser beam from “Shenguang-II" laser facility

  • H. Shu
  • S.-Z. Fu
  • X.-G. Huang
  • M.-X. Ma
  • J. Wu
  • J.-J. Ye
  • J.-H. He
  • Y. Gu
Plasma Physics

Abstract.

Using the ninth laser beam (converted to 2ω) of “Shenguang-II” laser facility and the beam smoothing technology of lens-array [Appl. Opt. 25, 377 (1986); Phys. Plasmas. 9, 3201 (1995)], a shock wave with 700 μm (the root-mean-square of shock breakout time (RMS) RMS ≈ 6.32 ps) flat top was created. An Al-Al four-step target was designed to do research on shock wave stability in an Al target. And the shock stability experiment with the Al-Al four-step target indicated that the shock wave steadily propagated in the Al target of thickness of about 20–45 μm under the power density of ~ 1.0×1014 W/cm2.

PACS.

51.30.+i Thermodynamic properties, equations of state 91.60.Gf High-pressure behavior 52.50.Lp Plasma production and heating by shock waves and compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.G.M. van Kesse, R. Sigel, Phys. Rev. Lett. 33, 1020 (1974) CrossRefADSGoogle Scholar
  2. F. Cottet et al., Phys. Rev. Lett. 52, 1884 (1985) Google Scholar
  3. A. Ng, D. Parfeniuk, L. DaSilva, Phys. Rev. Lett. 54, 2604 (1985) CrossRefADSGoogle Scholar
  4. R.G. McQueen, S.P. Marsh, J. Appl. Phys. 33, 654 (1962) CrossRefADSGoogle Scholar
  5. L.B. Da Silva et al., Phys. Rev. Lett. 78, 483 (1997) CrossRefADSGoogle Scholar
  6. M. Koenig et al., Phys. Rev. Lett. 74, 2260 (1995) CrossRefADSGoogle Scholar
  7. D. Batani et al., Phys. Rev. B 61, 9287 (2000) CrossRefADSGoogle Scholar
  8. A. Benuzzi et al., Phys. Rev. E 54, 2162 (1996) CrossRefADSGoogle Scholar
  9. D. Batani et al., Phys. Rev. Lett. 88, 235502 (2002) CrossRefADSGoogle Scholar
  10. D. Batani et al., Phys. Rev. Lett. 92, 065503 (2004) CrossRefADSGoogle Scholar
  11. A.M. Evans et al., Laser. Part. Beams 14, 113 (1996) ADSGoogle Scholar
  12. G.W. Collins et al., Science 281, 1178 (1998) CrossRefGoogle Scholar
  13. S.W. Hann et al., Phys. Plasmas 2, 2480 (1995) CrossRefADSGoogle Scholar
  14. J.D. Lindl, Phys. Plasmas 2, 3933 (1995) CrossRefADSGoogle Scholar
  15. T.R. Dittrich et al., Phys. Plasmas 6, 2164 (1999) CrossRefADSGoogle Scholar
  16. R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, Phys. Fluids 31, 3059 (1988) MATHCrossRefADSGoogle Scholar
  17. D. Batani et al., Eur. Phys. J. D 23, 99 (2003) CrossRefADSGoogle Scholar
  18. T. Löwer et al., Phys. Rev. Lett. 72, 3186 (1994) CrossRefADSGoogle Scholar
  19. X.M. Deng, X.C. Liang, Z. Chen, Appl. Opt. 25, 377 (1986) ADSGoogle Scholar
  20. S.Z. Fu et al., Phys. Plasmas. 9, 3201 (1995) Google Scholar
  21. M. Koenig et al., Phys. Rev. E 50, R3314 (1994) Google Scholar
  22. D. Batani et al., Eur. Phys. J. D 19, 231 (2002) CrossRefADSGoogle Scholar
  23. P. Mora, Phys. Plasmas. 25, 1051 (1982) MATHGoogle Scholar
  24. L. Dongxian et al., in Proceedings of the International Conference on Computational Physics, Beijing, 1988, edited by L. Denyuan, D. Feng (World Scientific, Singapore, 1989), p. 156 Google Scholar
  25. G. Yuan et al., Laser Part. Beams 14, 157 (1996) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • H. Shu
    • 1
  • S.-Z. Fu
    • 1
  • X.-G. Huang
    • 1
  • M.-X. Ma
    • 1
  • J. Wu
    • 1
  • J.-J. Ye
    • 1
  • J.-H. He
    • 1
  • Y. Gu
    • 1
  1. 1.Shanghai Institute of Laser PlasmaShanghaiP.R. China

Personalised recommendations