Advertisement

The European Physical Journal D

, Volume 45, Issue 1, pp 75–80 | Cite as

Physical preseparation: A powerful new method for transactinide chemists

Chemical Properties of the Heaviest Elements

Abstract.

In recent years, the concept of physical preseparation of single atoms was introduced into the field of transactinide chemistry. In this approach, the transactinide element of interest is isolated in a physical recoil separator and then extracted from this machine. The beam as well as the unwanted reaction products are strongly suppressed, allowing for the investigation of new chemical systems that were not accessible before. The most important aspects of the technique are discussed and the advantages for chemistry experiments with transactinides are presented, using some of the chemical studies that were performed with preseparated isotopes as examples.

PACS.

25.70.-z Low and intermediate energy heavy-ion reactions 25.70.Gh Compound nucleus 25.70.Jj Fusion and fusion-fission reactions 29.25.Rm Sources of radioactive nuclei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Schädel, Angew. Chem. Int. Ed. 45, 368 (2006) CrossRefGoogle Scholar
  2. The Chemistry of Superheavy Elements, edited by M. Schädel (Kluwer Academic Publishers, Dordrecht, 2003) Google Scholar
  3. Ch.E. Düllmann et al., Nature 418, 859 (2002) CrossRefADSGoogle Scholar
  4. A.V. Zweidorf et al., Radiochim. Acta 91, 855 (2003) Google Scholar
  5. A. Yakushev et al., Radiochim. Acta 91, 433 (2003) CrossRefGoogle Scholar
  6. R. Eichler et al., Radiochim. Acta 94, 181 (2006) CrossRefGoogle Scholar
  7. H. Wollnik et al., Nucl. Instrum. Meth. 127, 539 (1975) CrossRefGoogle Scholar
  8. H. Wollnik, Nucl. Instrum. Meth. 139, 311 (1976) CrossRefGoogle Scholar
  9. H.W. Gäggeler et al., Nucl. Instrum. Meth. A 309, 201 (1992) Google Scholar
  10. Ch.E. Düllmann et al., Nucl. Instrum. Meth. A 479, 631 (2002) CrossRefGoogle Scholar
  11. B. Eichler, Kernenergie 19, 307 (1976) (in German) Google Scholar
  12. K.S. Pitzer, J. Chem. Phys. 63, 1032 (1975) ADSGoogle Scholar
  13. Proc. Workshop on the Physics Using Compound Nucleus Separators, edited by K.E. Gregorich, E.O. Lawrence Berkeley Laboratory, Berkeley, CA, USA, April 10-12, 1997, LBNL-40483 (1997) Google Scholar
  14. J.P. Omtvedt et al., J. Nucl. Radiochem. Sci. 3, 121 (2002) Google Scholar
  15. Ch.E. Düllmann et al., Nucl. Instrum. Meth. A 551, 528 (2005) CrossRefADSGoogle Scholar
  16. V. Ninov et al., Proc. 2nd Int. Conf. on Exotic Nuclei and Atomic Masses, edited by B.M. Sherril, D.J. Morrissey, C.N. Davids, ENAM98, Bellaire, MI, USA, 1998, AIP Conf. Proc. 455, 704 (1998) Google Scholar
  17. U.W. Kirbach et al., Nucl. Instrum. Meth. A 484, 587 (2002) CrossRefGoogle Scholar
  18. M. Schädel et al., “The TASCA Project”, GSI Scientific Report 2005, Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany, Report 2006-1, 2006, p. 262; see also http://www.gsi.de/TASCA Google Scholar
  19. H. Haba, private communication Google Scholar
  20. K. Morita et al., Nucl. Instrum. B 70, 220 (1992) CrossRefADSGoogle Scholar
  21. Yu.Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004) CrossRefADSGoogle Scholar
  22. Ch.E. Düllmann, Czech. J. Phys. 56 (Suppl. D), D333 (2006) Google Scholar
  23. A. Semchenkov et al., “Envisaged TASCA Configuration”, GSI Scientific Report 2004, Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany, Report 2005-1, 2005, p. 332 Google Scholar
  24. A. Semchenkov, private communication Google Scholar
  25. K.E. Gregorich et al., Eur. Phys. J. A 18, 633 (2003) CrossRefADSGoogle Scholar
  26. J.P. Omtvedt et al., Eur. Phys. J. D 45, 91 (2007) Google Scholar
  27. M. Leino, Nucl. Instrum. Meth. B 204, 129 (2003) CrossRefADSGoogle Scholar
  28. A. Ghiorso et al., Nucl. Instrum. Meth. A 269, 192 (1988) CrossRefGoogle Scholar
  29. K.E. Gregorich et al., Phys. Rev. C 72, 014605 (2005) CrossRefADSGoogle Scholar
  30. K.E. Gregorich, private communication Google Scholar
  31. H.-D. Betz, Rev. Mod. Phys. 44, 465 (1972) CrossRefADSGoogle Scholar
  32. A.B. Wittkower et al., Phys. Rev. A 7, 159 (1973) CrossRefADSGoogle Scholar
  33. K.L. Brown et al., “TRANSPORT/360 - a computer program for designing charged particle beam transport systems”, Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA, SLAC-91, 1970 Google Scholar
  34. U. Rohrer, “Computer programs for designing, investigating and commissioning charged particle beam lines”, PSI Scientific and Technical Report 2000, Volume VI (Large Research Facilities), Paul Scherrer Institut, Villigen, Switzerland, 2001, p. 24 Google Scholar
  35. J.P. Omtvedt, private communication Google Scholar
  36. H. Persson et al., Radiochim. Acta 48, 177 (1989) Google Scholar
  37. L. Stavsetra et al., Nucl. Instrum. Meth. A 551, 323 (2005) CrossRefGoogle Scholar
  38. J.P. Omtvedt et al., J. Alloys Comp. 271–273, 303 (1998) Google Scholar
  39. L. Stavsetra et al., Nucl. Instrum. Meth. A 543, 509 (2005) CrossRefGoogle Scholar
  40. R. Sudowe et al., Radiochim. Acta 94, 123 (2006) CrossRefGoogle Scholar
  41. Ch.E. Düllmann et al., in Advances in Nuclear and Radiochemistry, edited by S.M. Qaim, H.H. Coenen (Forschungszentrum Jülich GmbH: Jülich, Germany, 2004), Vol. 3, p. 147 Google Scholar
  42. Ch.E. Düllmann et al., “Gas chemical investigation of hexafluoroacetylacetonates of Zr and Hf with preseparated isotopes”, GSI Scientific Report 2005, Gesellschaft für Schwerionenforschung, Darmstadt, Germany, GSI Report 2006-1, 2006, p. 203 Google Scholar
  43. Ch.E. Düllmann et al., Radiochim. Acta (to be published) Google Scholar
  44. S.C. Chattoraj et al., Inorg. Chem. 7, 2501 (1968) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Gesellschaft für Schwerionenforschung mbH, Planckstrasse 1DarmstadtGermany

Personalised recommendations