Advertisement

The European Physical Journal D

, Volume 42, Issue 2, pp 299–308 | Cite as

Continuous transfer and laser guiding between two cold atom traps

  • E. Dimova
  • O. Morizot
  • G. Stern
  • C. L. Garrido Alzar
  • A. Fioretti
  • V. Lorent
  • D. Comparat
  • H. Perrin
  • P. Pillet
Laser Cooling and Quantum Gas

Abstract.

We have demonstrated and modeled a simple and efficient method to transfer atoms from a first Magneto-Optical Trap (MOT) to a second one. Two independent setups, with cesium and rubidium atoms respectively, have shown that a high power and slightly diverging laser beam optimizes the transfer between the two traps when its frequency is red-detuned from the atomic transition. This pushing laser extracts a continuous beam of slow and cold atoms out of the first MOT and also provides a guiding to the second one through the dipolar force. In order to optimize the transfer efficiency, the dependence of the atomic flux on the pushing laser parameters (power, detuning, divergence and waist) is investigated. The atomic flux is found to be proportional to the first MOT loading rate. Experimentally, the transfer efficiency reaches 70%, corresponding to a transfer rate up to 2.7×108 atoms/s with a final velocity of 5.5 m/s. We present a simple analysis of the atomic motion inside the pushing–guiding laser, in good agreement with the experimental data.

PACS.

07.77.Gx Atomic and molecular beam sources and detectors 32.80.Lg Mechanical effects of light on atoms, molecules, and ions 32.80.Pj Optical cooling of atoms; trapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.D. Rapol, A. Wasan, V. Natarajan, Phys. Rev. A 64, 023402 (2001) CrossRefADSGoogle Scholar
  2. B.P. Anderson, M.A. Kasevich, Phys. Rev. A 63, 023404 (2001) CrossRefADSGoogle Scholar
  3. S.N. Atutov, R. Calabrese, V. Guidi, B. Mai, A.G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, S. Veronesi, Phys. Rev. A 67, 053401 (2003) CrossRefADSGoogle Scholar
  4. H.J. Lewandowski, D.M. Harber, D.L. Whitaker, E.A. Cornell, J. Low Temp. Phys. 132, 309 (2003) CrossRefGoogle Scholar
  5. M. Greiner, I. Bloch, T.W. Hänsch, T. Esslinger, Phys. Rev. A 63, 031401(R) (2001) CrossRefADSGoogle Scholar
  6. J.J. Arlt, O. Maragò, S. Webster, S. Hopkins, C.J. Foot, Opt. Commun. 157, 303 (1998) CrossRefADSGoogle Scholar
  7. J.M. Kohel, J. Ramirez-Serrano, R.J. Thompson, L. Maleki, J.L. Bliss, K.G. Libbrecht, J. Opt. Soc. Am. B 20, 1161 (2003) ADSGoogle Scholar
  8. K.H. Kim, K.I. Lee, H.R. Noh, W. Jhe, N. Kwon, M. Ohtsu, Phys. Rev. A 64, 013402 (2001) CrossRefADSGoogle Scholar
  9. K. Dieckmann, R.J. Spreeuw, M. Weidemüller, J.T. Walraven, Phys. Rev. A 58, 3891 (1998) CrossRefADSGoogle Scholar
  10. J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y.B. Ovchinnikov, T. Pfau, Phys. Rev. A 66, 023410 (2002) CrossRefADSGoogle Scholar
  11. R.S. Conroy, Y. Xiao, M. Vengalattore, W. Rooijakkers, M. Prentiss, Opt. Commun. 226, 259 (2003) CrossRefADSGoogle Scholar
  12. T. Lahaye, J.M. Vogel, J.M. Günter, Z. Wang, J. Dalibard, D. Guéry-Odelin, Phys. Rev. Lett. 93, 093003 (2004) CrossRefADSGoogle Scholar
  13. Z.T. Lu, K.L. Corwin, M.J. Renn, M.H. Anderson, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 77, 3331 (1996) CrossRefADSGoogle Scholar
  14. P. Cren, C.F. Roos, A. Aclan, J. Dalibard, D. Guéry-Odelin, Eur. Phys. J. D 20, 107 (2002) CrossRefADSGoogle Scholar
  15. B.K. Teo, T. Cubel, G. Raithel, Opt. Commun. 212, 307 (2002) CrossRefADSGoogle Scholar
  16. C. Slowe, L. Vernac, L. Vestergaard Hau, Rev. Sci. Instrum. 76, 103101 (2005) CrossRefADSGoogle Scholar
  17. C.J. Myatt, N.R. Newbury, R.W. Ghrist, S. Loutzenhiser, C.E. Wieman, Opt. Lett. 21, 290 (1996) ADSCrossRefGoogle Scholar
  18. W. Wohlleben, F. Chevy, K. Madison, J. Dalibard, Eur. Phys. J. D 15, 237 (2001) CrossRefADSGoogle Scholar
  19. L. Cacciapuoti, A. Castrillo, M. de Angelis, G.M. Tino, Eur. Phys. J. D 15, 245 (2001) CrossRefADSGoogle Scholar
  20. Yan Shu-Bin, Geng Tao, Zhang Tian-Cai, Wang Jun-Min, Chin. Phys. 15, 1746 (2006) CrossRefADSGoogle Scholar
  21. D. Müller, E.A. Cornell, D.Z. Anderson, E.R. Abraham, Phys. Rev. A 61, 033411 (2000) CrossRefADSGoogle Scholar
  22. L. Pruvost, D. Marescaux, O. Houde, H.T. Duong, Opt. Commun. 166, 199 (1999) CrossRefADSGoogle Scholar
  23. K. Szymaniec, H.J. Davies, C.S. Adams, Europhys. Lett. 45, 450 (1999) CrossRefADSGoogle Scholar
  24. B.T. Wolschrijn, R.A. Cornelussen, R.J.C. Spreeuw, H.B. van Linden van den Heuvell, New J. Phys. 4, 69 (2002) CrossRefADSGoogle Scholar
  25. A.M. Steane, M. Chowdhury, C.J. Foot, Phys. Rev. A 9, 2142 (1992) Google Scholar
  26. R. Grimm, M.s Weidemüller, Y.B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000) CrossRefGoogle Scholar
  27. This population ratio may be adjusted by using an elliptically polarized laser beam. It may be a way to optimize experimentally the final atomic beam velocity. In the model, we restrict ourselves to a linear polarization for sake of simplicity Google Scholar
  28. Daniel A. Steck, Alkali D Line Data, October 2003, http://steck.us/alkalidata/ Google Scholar
  29. In this model, we have neglected the heating term related to the fluctuations of the guiding force when the atom jumps between the two hyperfine states. However, this contribution is smaller by about a factor \(\left[\lambda \delta/(2 \pi w \Gamma)\right]^2\) than the spontaneous scattering term, that is more than two orders of magnitude everywhere along the guide Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • E. Dimova
    • 1
  • O. Morizot
    • 2
  • G. Stern
    • 1
  • C. L. Garrido Alzar
    • 2
  • A. Fioretti
    • 1
  • V. Lorent
    • 2
  • D. Comparat
    • 1
  • H. Perrin
    • 2
  • P. Pillet
    • 1
  1. 1.Laboratoire Aimé Cotton, CNRS, bâtiment 505, Université Paris-SudOrsayFrance
  2. 2.Laboratoire de physique des lasers, CNRS-Université Paris 13VilletaneuseFrance

Personalised recommendations