The European Physical Journal D

, Volume 42, Issue 1, pp 103–108 | Cite as

Indirect decoherence in optical lattices and cold gases

Laser Cooling and Quantum Gas
  • 46 Downloads

Abstract.

The interaction of two–level atoms with a common heat bath leads to an effective interaction between the atoms, such that with time the internal degrees of the atoms become correlated or even entangled. If part of the atoms remain unobserved this creates additional indirect decoherence for the selected atoms, on top of the direct decoherence due to the interaction with the heat bath. I show that indirect decoherence can drastically increase and even dominate the decoherence for sufficiently large times. I investigate indirect decoherence through thermal black body radiation quantitatively for atoms trapped at regular positions in an optical lattice as well as for atoms at random positions in a cold gas, and show how indirect decoherence can be controlled or even suppressed through experimentally accessible parameters.

PACS.

03.65.Yz Decoherence; open systems; quantum statistical methods 03.67.Lx Quantum computation 42.50.-p Quantum optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Zurek, Phys. Rev. D 24, 1516 (1981) CrossRefADSMathSciNetGoogle Scholar
  2. W.T. Strunz, F. Haake, D. Braun, Phys. Rev. A 67, 022101 (2003) CrossRefADSGoogle Scholar
  3. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 77, 4887 (1996) CrossRefADSGoogle Scholar
  4. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M. Devoret, Science 296, 886 (2002) CrossRefADSGoogle Scholar
  5. Y. Yu, S. Han, X. Chu, S.-I. Chu, Z. Wang, Science 296, 889 (2002) CrossRefADSGoogle Scholar
  6. K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermüller, M. Arndt, A. Zeilinger, Phys. Rev. Lett. 90, 160401 (2003) CrossRefADSGoogle Scholar
  7. B. Juulsgaard, J. Sherson, J. Fiurášek, E.S. Polzik, Nature 432, 482 (2004) CrossRefADSGoogle Scholar
  8. C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005) CrossRefGoogle Scholar
  9. H.G. Krojanski, D. Suter, Phys. Rev. Lett. 93, 090501 (2004) CrossRefADSGoogle Scholar
  10. W. Dür, C. Simon, J.I. Cirac, Phys. Rev. Lett. 89, 210402 (2002) CrossRefADSGoogle Scholar
  11. F. Mintert, A.R.R. Carvalho, M. Kus, A. Buchleitner, Phys. Rep. 415, 207 (2005) CrossRefADSMathSciNetGoogle Scholar
  12. A.J. Leggett, J. Phys.: Condens. Matter 14, R415 (2002) Google Scholar
  13. D. Braun, Phys. Rev. Lett. 96, 230502 (2006) CrossRefADSGoogle Scholar
  14. D. Braun, Phys. Rev. Lett. 89, 277901 (2002) CrossRefADSGoogle Scholar
  15. I. Bloch, Nat. Phys. 1, 23 (2005) CrossRefGoogle Scholar
  16. D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000) CrossRefADSGoogle Scholar
  17. M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 87, 037901 (2001) CrossRefADSGoogle Scholar
  18. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001) CrossRefADSMathSciNetGoogle Scholar
  19. K. Afrousheh, P. Bohlouli-Sanjani, D. Vagale, A. Mugford, M. Fedorov, J. Martin, Phys. Rev. Lett. 93, 233001 (2004) CrossRefADSGoogle Scholar
  20. D. Leibfried et al., Nature 438, 639 (2005) CrossRefGoogle Scholar
  21. H. Häffner et al., Nature 438, 643 (2005) CrossRefADSGoogle Scholar
  22. B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe, Nature 428, 153 (2004) CrossRefADSGoogle Scholar
  23. M. Scully, M. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997) Google Scholar
  24. D. Braun, F. Haake, W. Strunz, Phys. Rev. Lett. 86, 2913 (2001) CrossRefADSGoogle Scholar
  25. P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997) CrossRefADSGoogle Scholar
  26. L.M. Duan, G.C. Guo, Phys. Rev. A 57, 2399 (1998) CrossRefADSGoogle Scholar
  27. D.A. Lidar, I.L. Chuang, K.B. Whaley, Phys. Rev. Lett. 81, 2594 (1998) CrossRefADSGoogle Scholar
  28. D. Braun, P.A. Braun, F. Haake, Proceedings of the 1998 Bielefeld Conference on “Decoherence: Theoretical, Experimental, and Conceptual Problems”, Lect. Notes Phys. 538, 55 (2000) ADSCrossRefGoogle Scholar
  29. J.B. Altepeter, P.G. Hadley, S.M. Wendelken, A.J. Berglund, P.G. Kwiat, Phys. Rev. Lett. 92, 147901 (2004) CrossRefADSGoogle Scholar
  30. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) CrossRefADSGoogle Scholar
  31. J. Schuster, A. Marte, S. Amtage, B. Sang, G. Rempe, H.C.W. Beijerinck, Phys. Rev. Lett. 87, 170404 (2001) CrossRefADSGoogle Scholar
  32. M.-S. Chang, Q. Qin, W. Zhang, L. You, M.S. Chapman, Nat. Phys. 1, 111 (2005) CrossRefGoogle Scholar
  33. H. Feshbach, Ann. Phys. (NY) 5, 357 (1958) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, IRSAMC, UMR 5152 du CNRS, Université Paul SabatierToulouseFrance

Personalised recommendations