The European Physical Journal D

, Volume 41, Issue 2, pp 267–274 | Cite as

Competing processes for electron capture to continuum in relativistic ion-atom collisions

Atomic and Molecular Collisions

Abstract.

The relative importance of the two mechanisms for the capture of a target electron by a fast, heavy projectile, radiative ionization (RI) and Coulomb capture to continuum (ECC), is studied in the vicinity of the forward peak. For both processes a consistent relativistic description, based on the impulse approximation, is provided. It is found that the differential cross-sections scale with the projectile charge and exhibit a common velocity dependence. As a result, RI starts to dominate over ECC near the same impact energy (~11 MeV/amu) for arbitrary bare projectiles colliding with hydrogen. For electrons from the inner shells of heavier targets this energy increases, however, which is confirmed by a coincidence experiment on 90 MeV/amu U88+ + N2.

PACS.

34.70.+e Charge transfer 41.60.-m Radiation by moving charges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000) CrossRefADSGoogle Scholar
  2. M. Nofal et al., AMOP Spring Meeting, Verhandl. DPG (IV) 41, 7/33 (2006) Google Scholar
  3. M. Nofal et al., GSI Scientific Annual Report, 2005 Google Scholar
  4. J.S. Briggs, K. Dettmann, Phys. Rev. Lett. 33, 1123 (1974) CrossRefADSGoogle Scholar
  5. M.E. Rudd, J. Macek, Case Studies in Atomic Physics (North Holland, Amsterdam, 1972), Vol. 3, p. 48 Google Scholar
  6. R. Shakeshaft, L. Spruch, J. Phys. B 11, L621 (1978) Google Scholar
  7. M.W. Lucas, W. Steckelmacher, J. Macek, J.E. Potter, J. Phys. B 13, 4833 (1980) CrossRefADSGoogle Scholar
  8. M.L. Martiarena, C.R. Garibotti, Phys. Lett. A 113, 307 (1985) CrossRefADSGoogle Scholar
  9. D.H. Jakubaßa-Amundsen , J. Phys. B 20, 325 (1987) CrossRefADSGoogle Scholar
  10. D.H. Jakubaßa, M. Kleber, Z. Phys. A 273, 29 (1975) CrossRefGoogle Scholar
  11. A. Yamadera, K. Ishii, K. Sera, M. Sebata, S. Morita, Phys. Rev. A 23, 24 (1981) CrossRefADSGoogle Scholar
  12. D.H. Jakubaßa-Amundsen, J. Phys. B 36, 1971 (2003) CrossRefADSGoogle Scholar
  13. T. Ludziejewski et al., J. Phys. B 31, 2601 (1998) CrossRefADSGoogle Scholar
  14. D.H. Jakubaßa-Amundsen, Rad. Phys. Chem. (in print, 2006) Google Scholar
  15. D.H. Jakubaßa-Amundsen, J. Phys. B 16, 1767 (1983) CrossRefADSGoogle Scholar
  16. D.H. Jakubaßa-Amundsen, Lecture Notes in Physics, edited by K.O. Groeneveld, W. Meckbach, I.A. Sellin (Springer, Berlin, 1984), Vol. 213, p. 17 Google Scholar
  17. D.H. Jakubaßa-Amundsen, Phys. Rev. A 38, 70 (1988) CrossRefADSGoogle Scholar
  18. D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (BI, Mannheim, 1964) Google Scholar
  19. E.M. Rose, Relativistic Electron Theory (BI, Mannheim, 1971), Vol. 1, Sect. III Google Scholar
  20. D.M. Davidović, B.L. Moiseiwitsch, P.H. Norrington, J. Phys. B 11, 847 (1978) CrossRefADSGoogle Scholar
  21. G. Elwert, E. Haug, Phys. Rev. 183, 90 (1969) CrossRefADSGoogle Scholar
  22. C.D. Shaffer, X.-M. Tong, R.H. Pratt, Phys. Rev. A 53, 4158 (1996) CrossRefADSGoogle Scholar
  23. A. Nordsieck, Phys. Rev. 93, 785 (1954) CrossRefMathSciNetADSGoogle Scholar
  24. S. Hagmann, private communication; M. Nofal et al., preprint (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Mathematics Institute, University of MunichMunichGermany

Personalised recommendations