Advertisement

The theoretical calculation of transition probabilities for some excited p-d transitions in atomic nitrogen

Atomic Physics

Abstract.

The atomic transition probabilities are calculated for individual lines between some quartet terms of 3p↦4d and 3p↦5d transition arrays using weakest bound electron potential model theory (WBEPMT). In the determination of relevant parameters which are needed for calculation of transition probabilities, we employed numerical non-relativistic Hartree-Fock wave functions for expectation values of radius in both ground and excited states unlike to NCA method used on traditional WBEPMT procedure. We have obtained very good agreement between our results and the accepted values taken from NIST.

PACS.

31.10.+z Theory of electronic structure, electronic transitions, and chemical binding 32.70.Cs Oscillator strengths, lifetimes, transition moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Biemont, C.F. Fischer, M. Godefroid, N. Vaeck, A. Hibbert, Proceedings of the meeting on atomic data and oscillator strengths for Astrophysical and fusion research, edited by J.E. Hansen (North-Holland, Amsterdam, 1989) p. 59 Google Scholar
  2. D.S. Leckrone, S. Johansson, R.L. Kurucz, S.J. Adelman, Proceedings of the meeting on atomic data and oscillator strengths for Astrophysical and fusion research, edited by J.E. Hansen (North-Holland, Amsterdam, 1990) Google Scholar
  3. D.R. Beck, C.A. Nicolaides, J. Quant. Spectrosc. Radiat. Transfer. 16, 297 (1976) CrossRefGoogle Scholar
  4. B.C. Fawcett, At. Data Nucl. Data Tabl. 37, 411 (1987) CrossRefADSGoogle Scholar
  5. D. Hofsaess, J. Quant. Spectrosc. Radiat. Transfer 42, 45 (1989) CrossRefADSGoogle Scholar
  6. M.A. Suskin, A.W. Weiss, private communication to A. Hibbert (from Ref. [8]) (1989) Google Scholar
  7. K.L. Bell, K.A. Berrington, J. Phys. At. Mol. Opt. Phys. 24, 933 (1991) CrossRefADSGoogle Scholar
  8. A. Hibbert, E. Biemont, M. Godefroid, N. Vaeck, Astron. Astroph. Suppl. Ser. 88, 505 (1991) ADSGoogle Scholar
  9. M. Tong, C.F. Fischer, L. Sturesson, J. Phys. B: At. Mol. Opt. Phys. 27, 4819 (1994) CrossRefADSGoogle Scholar
  10. C.F. Fisher, Z. Phys. D 32, 21 (1994) CrossRefGoogle Scholar
  11. K.L. Bell, A. Hibbert, R.P. Stafford, Phys. Scripta 52, 240 (1995) CrossRefADSGoogle Scholar
  12. D.J.R. Robinson, A. Hibbert, J. Phys. B: At. Mol. Opt. Phys. 30, 4813 (1997) CrossRefADSGoogle Scholar
  13. N.W. Zheng, T. Wang, R. Yang, Y.G. Wu, J. Chem. Phys. 112, 7042 (2000) CrossRefADSGoogle Scholar
  14. N.W. Zheng, T. Wang, Chem. Phys. 282, 31 (2002) CrossRefGoogle Scholar
  15. G.I. Tachiev, C.F. Fischer, Astron. Astrophys. 385, 716 (2002) and Vanderbilt University, Nashville, TN http://www.vuse.vanderbilt.edu/∼cff/ mchf collection CrossRefADSGoogle Scholar
  16. N.W. Zheng, Chin. Sci. Bull. 22, 531 (1977) Google Scholar
  17. N.W. Zheng, T. Wang, T. Zhou, Y.J. Sun, Y. Su, Y. Zhang, J. Phys. Soc. Jap. 68, 3859 (1999) CrossRefGoogle Scholar
  18. G.W. Wen, L.Y. Wang, R.D. Wang, Chin. Sci. Bull. 36, 547 (1991) Google Scholar
  19. N.W. Zheng et al., At. Data and Nucl. Data Tabl. 79, 109 (2001) CrossRefGoogle Scholar
  20. N.W. Zheng, T. Wang, Spectrochim. Acta B 58, 1319 (2003) CrossRefGoogle Scholar
  21. J. Fan, N.W. Zheng, Chem. Phys. Lett. 400, 273 (2004) CrossRefGoogle Scholar
  22. N.W. Zheng, T. Wang, R. Yang, Y.J. Wu, J. Chem. Phys. 112, 7042 (2000) CrossRefADSGoogle Scholar
  23. J. Fan, N.W. Zheng, D.X. Ma, T. Wang, Phys. Scripta 69, 398 (2004) MATHCrossRefADSGoogle Scholar
  24. N.W. Zheng et al., Int. J. Quant. Chem. 76, 51 (2000) CrossRefGoogle Scholar
  25. N.W. Zheng et al., Int. J. Quant. Chem. 81, 232 (2001) CrossRefGoogle Scholar
  26. N.W. Zheng et al., Int. J. Quant. Chem. 98, 281 (2004) CrossRefGoogle Scholar
  27. C.F. Fischer, Comput. Phys. Commun. 43, 355 (1987) CrossRefADSGoogle Scholar
  28. G. Gaigalas, C.F. Fischer, Comput. Phys. Commun. 98, 255 (1996) CrossRefADSGoogle Scholar
  29. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981), pp. 412, 420 Google Scholar
  30. Yu. Ralchenko, F.C. Jou, D.E. Kelleher, A.E. Kramida, A. Musgrove, J. Reader, W.L. Wiese, K. Olsen, NIST Atomic Spectra Database (version 3.0.1), National Institute of Standards and Technology, Gaithersburg, MD (2005) Google Scholar
  31. C.E. Theodosiou, Phys. Rev. A 30, 2881 (1984) CrossRefADSGoogle Scholar
  32. NIST Atomic Spectroscopic Database URL:http://physics.nist.gov Physical Reference Data (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Arts and Science, Selçuk UniversityKonyaTurkey

Personalised recommendations