Skip to main content
Log in

The theoretical calculation of transition probabilities for some excited p-d transitions in atomic nitrogen

  • Atomic Physics
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The atomic transition probabilities are calculated for individual lines between some quartet terms of 3p↦4d and 3p↦5d transition arrays using weakest bound electron potential model theory (WBEPMT). In the determination of relevant parameters which are needed for calculation of transition probabilities, we employed numerical non-relativistic Hartree-Fock wave functions for expectation values of radius in both ground and excited states unlike to NCA method used on traditional WBEPMT procedure. We have obtained very good agreement between our results and the accepted values taken from NIST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Biemont, C.F. Fischer, M. Godefroid, N. Vaeck, A. Hibbert, Proceedings of the meeting on atomic data and oscillator strengths for Astrophysical and fusion research, edited by J.E. Hansen (North-Holland, Amsterdam, 1989) p. 59

  • D.S. Leckrone, S. Johansson, R.L. Kurucz, S.J. Adelman, Proceedings of the meeting on atomic data and oscillator strengths for Astrophysical and fusion research, edited by J.E. Hansen (North-Holland, Amsterdam, 1990)

  • D.R. Beck, C.A. Nicolaides, J. Quant. Spectrosc. Radiat. Transfer. 16, 297 (1976)

    Article  Google Scholar 

  • B.C. Fawcett, At. Data Nucl. Data Tabl. 37, 411 (1987)

    Article  ADS  Google Scholar 

  • D. Hofsaess, J. Quant. Spectrosc. Radiat. Transfer 42, 45 (1989)

    Article  ADS  Google Scholar 

  • M.A. Suskin, A.W. Weiss, private communication to A. Hibbert (from Ref. [8]) (1989)

  • K.L. Bell, K.A. Berrington, J. Phys. At. Mol. Opt. Phys. 24, 933 (1991)

    Article  ADS  Google Scholar 

  • A. Hibbert, E. Biemont, M. Godefroid, N. Vaeck, Astron. Astroph. Suppl. Ser. 88, 505 (1991)

    ADS  Google Scholar 

  • M. Tong, C.F. Fischer, L. Sturesson, J. Phys. B: At. Mol. Opt. Phys. 27, 4819 (1994)

    Article  ADS  Google Scholar 

  • C.F. Fisher, Z. Phys. D 32, 21 (1994)

    Article  Google Scholar 

  • K.L. Bell, A. Hibbert, R.P. Stafford, Phys. Scripta 52, 240 (1995)

    Article  ADS  Google Scholar 

  • D.J.R. Robinson, A. Hibbert, J. Phys. B: At. Mol. Opt. Phys. 30, 4813 (1997)

    Article  ADS  Google Scholar 

  • N.W. Zheng, T. Wang, R. Yang, Y.G. Wu, J. Chem. Phys. 112, 7042 (2000)

    Article  ADS  Google Scholar 

  • N.W. Zheng, T. Wang, Chem. Phys. 282, 31 (2002)

    Article  Google Scholar 

  • G.I. Tachiev, C.F. Fischer, Astron. Astrophys. 385, 716 (2002) and Vanderbilt University, Nashville, TN http://www.vuse.vanderbilt.edu/∼cff/ mchf collection

    Article  ADS  Google Scholar 

  • N.W. Zheng, Chin. Sci. Bull. 22, 531 (1977)

    Google Scholar 

  • N.W. Zheng, T. Wang, T. Zhou, Y.J. Sun, Y. Su, Y. Zhang, J. Phys. Soc. Jap. 68, 3859 (1999)

    Article  Google Scholar 

  • G.W. Wen, L.Y. Wang, R.D. Wang, Chin. Sci. Bull. 36, 547 (1991)

    Google Scholar 

  • N.W. Zheng et al., At. Data and Nucl. Data Tabl. 79, 109 (2001)

    Article  Google Scholar 

  • N.W. Zheng, T. Wang, Spectrochim. Acta B 58, 1319 (2003)

    Article  Google Scholar 

  • J. Fan, N.W. Zheng, Chem. Phys. Lett. 400, 273 (2004)

    Article  Google Scholar 

  • N.W. Zheng, T. Wang, R. Yang, Y.J. Wu, J. Chem. Phys. 112, 7042 (2000)

    Article  ADS  Google Scholar 

  • J. Fan, N.W. Zheng, D.X. Ma, T. Wang, Phys. Scripta 69, 398 (2004)

    Article  MATH  ADS  Google Scholar 

  • N.W. Zheng et al., Int. J. Quant. Chem. 76, 51 (2000)

    Article  Google Scholar 

  • N.W. Zheng et al., Int. J. Quant. Chem. 81, 232 (2001)

    Article  Google Scholar 

  • N.W. Zheng et al., Int. J. Quant. Chem. 98, 281 (2004)

    Article  Google Scholar 

  • C.F. Fischer, Comput. Phys. Commun. 43, 355 (1987)

    Article  ADS  Google Scholar 

  • G. Gaigalas, C.F. Fischer, Comput. Phys. Commun. 98, 255 (1996)

    Article  ADS  Google Scholar 

  • R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981), pp. 412, 420

  • Yu. Ralchenko, F.C. Jou, D.E. Kelleher, A.E. Kramida, A. Musgrove, J. Reader, W.L. Wiese, K. Olsen, NIST Atomic Spectra Database (version 3.0.1), National Institute of Standards and Technology, Gaithersburg, MD (2005)

  • C.E. Theodosiou, Phys. Rev. A 30, 2881 (1984)

    Article  ADS  Google Scholar 

  • NIST Atomic Spectroscopic Database URL:http://physics.nist.gov Physical Reference Data (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Çelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çelik, G., Akın, E. & Kılıç, H. The theoretical calculation of transition probabilities for some excited p-d transitions in atomic nitrogen. Eur. Phys. J. D 40, 325–330 (2006). https://doi.org/10.1140/epjd/e2006-00176-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00176-1

PACS.

Navigation