Advertisement

Postponement of dark-count effects in practical quantum key-distribution by two-way post-processing

  • A. Khalique
  • G. M. Nikolopoulos
  • G. Alber
Quantum Optics and Quantum Information

Abstract.

The influence of imperfections on achievable secret-key generation rates of quantum key distribution protocols is investigated. As examples of relevant imperfections, we consider tagging of Alice's qubits and dark counts at Bob's detectors, while we focus on a powerful eavesdropping strategy which takes full advantage of tagged signals. It is demonstrated that error correction and privacy amplification based on a combination of a two-way classical communication protocol and asymmetric Calderbank-Shor-Steane codes may significantly postpone the disastrous influence of dark counts. As a result, the distances are increased considerably over which a secret key can be distributed in optical fibres reliably. Results are presented for the four-state, the six-state, and the decoy-state protocols.

PACS.

03.67.Dd Quantum cryptography 03.67.Hk Quantum communication 

QICS

20. Quantum communication 22.10.+k High key rates 23.10.+l Limits for shared entanglement 

References

  1. C.H. Bennett, G. Brassard, in Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore (IEEE, New York, 1984), p. 175 Google Scholar
  2. D. Bruß, Phys. Rev. Lett. 81, 3018 (1998) CrossRefADSGoogle Scholar
  3. P.W. Shor, J. Preskill, Phys. Rev. Lett. 85, 441 (2000) CrossRefADSGoogle Scholar
  4. M. Koashi, J. Preskill, Phys. Rev. Lett. 90, 057902 (2002) MathSciNetCrossRefADSGoogle Scholar
  5. H.-K. Lo, Quant. Inf. Comput. 1, 81 (2001) MATHMathSciNetGoogle Scholar
  6. D. Mayers, J. ACM 48, 351 (2001) MathSciNetCrossRefGoogle Scholar
  7. For details see, for instance, related discussion in reference GLLP00 Google Scholar
  8. D. Gottesman, H.-K. Lo, N. Lütkenhaus, J. Preskill, Quant. Inf. Comput. 4, 325 (2004) MathSciNetMATHGoogle Scholar
  9. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002) CrossRefADSGoogle Scholar
  10. N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000) CrossRefADSGoogle Scholar
  11. G. Brassard, N. Lütkenhaus, T. Mor, B.C. Sanders, Phys. Rev. Lett. 85, 1330 (2000) CrossRefADSGoogle Scholar
  12. S. Felix, N. Gisin, A. Stefanov, H. Zbinden, J. Mod. Opt. 48, 2009 (2001) MATHCrossRefADSGoogle Scholar
  13. H. Inamori, N. Lütkenhaus, D. Mayers, e-print arXiv:quant-ph/0107017 Google Scholar
  14. A.R. Calderbank, P.W. Shor, Phys. Rev. A 54, 1098 (1996); A.M. Stean, Proc. Roy. Soc. Lond. A 452, 2551 (1996) CrossRefADSGoogle Scholar
  15. D. Gottesman, H.-K. Lo, IEEE Trans. Inf. Theory 49, 457 (2003) MATHMathSciNetCrossRefGoogle Scholar
  16. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wooters, Phys. Rev. A 54, 3824 (1996) MathSciNetCrossRefADSGoogle Scholar
  17. X.B. Wang, Phys. Rev. A 72, 012322 (2005) CrossRefADSGoogle Scholar
  18. X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005) CrossRefADSGoogle Scholar
  19. C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev. Lett. 68, 557 (1992) MATHMathSciNetCrossRefADSGoogle Scholar
  20. M.A. Nielsen, I.L. Chuang, Quantum computation and Quantum Information (Cambridge University Press, cambridge, 2000) Google Scholar
  21. The Bell states, \( \, | \rm\Phi^\pm \rangle\equiv(\, | 0 \rangle_A\otimes\, | 0 \rangle_B \pm\, | 1 \rangle_A\otimes\, | 1 \rangle_B)/\sqrt{2}\) and \(\, | \rm\Psi^\pm \rangle\equiv(\, | 0 \rangle_A\otimes\, | 1 \rangle_B \pm\, | 1 \rangle_A\otimes\, | 0 \rangle_B)/\sqrt{2}\), form an orthonormal basis in the two-qubit Hilbert space Google Scholar
  22. G.M. Nikolopoulos, A. Khalique, G. Alber, Eur. Phys. J. D 37, 441 (2006) CrossRefADSGoogle Scholar
  23. Classical random sampling theory can be applied safely for the estimation of error rates and the establishment of related confidence levels during the verification test (see, for instance, reference LCA for details). For the sake of simplicity, throughout this work we assume that the bit-error rate estimated during the tests is the actual bit-error rate in the pairs shared between Alice and Bob Google Scholar
  24. H.-K. Lo, H.F. Chau, M. Ardehali, J. Cryptology 18, 133 (2005) MATHMathSciNetCrossRefADSGoogle Scholar
  25. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonson, D. Ljunggren, E. Sundberg, Opt. Expr. 4, 383 (1999) ADSCrossRefGoogle Scholar
  26. M. Curty, M. Lewenstein, N. Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2003) CrossRefADSGoogle Scholar
  27. A. Acín, N. Gisin, Phys. Rev. Lett. 94, 020501 (2005) MathSciNetCrossRefADSGoogle Scholar
  28. N. Lütkenhaus, M. Jahma, New J. Phys. 4, 44 (2002) CrossRefGoogle Scholar
  29. H.F. Chau, Phys. Rev. A 66, 060302 (2002) CrossRefADSGoogle Scholar
  30. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996) CrossRefADSGoogle Scholar
  31. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wooters, Phys. Rev. Lett. 76, 722 (1996) CrossRefADSGoogle Scholar
  32. K. Ranade, G. Alber, J. Phys. A 39, 1701 (2006) MATHMathSciNetCrossRefADSGoogle Scholar
  33. X. Ma, C.-H. Fred Fung, F. Dupuis, K. Chen, K. Tamaki, H.-K. Lo, e-print arXiv:quant-ph/0604094 Google Scholar
  34. A. Acín, J. Bae, E. Bagan, M. Baig, Ll. Masanes, and R. Mu\(\tilde{\rm n}\)oz-Tapia, Phys. Rev. A 73, 012327 (2006) CrossRefADSGoogle Scholar
  35. D. Mayers, A. Yao, Quant. Inf. Comput. 4, 273 (2004) MathSciNetMATHGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Angewandte Physik, Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations