Advertisement

Multiple Devil's staircase in a discontinuous circle map

Nonlinear Dynamics

Abstract.

The multiple Devil's staircase, which describes phase-locking behavior, is observed in a discontinuous nonlinear circle map. Phase-locked steps form many towers with similar structure in winding number(W)-parameter(k) space. Each step belongs to a certain period-adding sequence that exists in a smooth curve. The Collision modes that determine steps and the sequence of mode transformations create a variety of tower structures and their particular characteristics. Numerical results suggest a scaling law for the width of phase-locked steps in the period-adding (W=n/(n+i), n,i∈int) sequences, that is, Δk(n)∝n (τ>0). And the study indicates that the multiple Devil's staircase may be common in a class of discontinuous circle maps.

PACS.

05.45.Ac Low-dimensional chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bak, R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982) MathSciNetCrossRefADSGoogle Scholar
  2. T. Gilbert, R.W. Gammon, Int. J. Bifur. Chaos 10, 155 (2000) CrossRefGoogle Scholar
  3. S. Lacis, J.C. Bacri, A. Cebes, R. Perzynski, Phys. Rev. E 55, 2640 (1997) CrossRefADSGoogle Scholar
  4. D.-R. He, D.-K. Wang, K.-J. Shi, C.-H. Yang, L.-Y. Chao, J.Y. Zhang, Phys. Lett. A 136, 363 (1989) MathSciNetCrossRefADSGoogle Scholar
  5. W.-J. Yeh, D.-R. He, Y.H. Kao, Phys. Rev. B 31, 1359 (1985) CrossRefADSGoogle Scholar
  6. P. Bak, Phys. Today 39, 38 (1986) ADSGoogle Scholar
  7. S.-X. Qu, S. Wu, D.-R. He, Phys. Lett. A 231, 152 (1997) MATHMathSciNetCrossRefADSGoogle Scholar
  8. S.-X. Qu, S. Wu, D.-R. He, Phys. Rev. E 57, 402 (1998) MathSciNetCrossRefADSGoogle Scholar
  9. C.-Y. Wu, S.-X. Qu, S. Wu, D.-R. He, Chin. Phys. Lett. 15, 246 (1998) CrossRefGoogle Scholar
  10. K. Kaneko, Prog. Theor. Phys. 68, 669 (1982) MATHMathSciNetCrossRefADSGoogle Scholar
  11. X.-M. Wang, J.-S. Mao, S.-X. Qu, Z. Zhou, D.-R. He, Phys. Lett. A 293, 151 (2002) MATHCrossRefADSGoogle Scholar
  12. X.-M. Wang, S.-X. Qu, D.-R. He, Int. J. Bifur. Chaos 15, 1677 (2005) MATHCrossRefGoogle Scholar
  13. S. Martin, W. Martienssen, Phys. Rev. Lett. 56, 1522 (1986) CrossRefADSGoogle Scholar
  14. H.E. Nusse, E. Ott, J.A. Yorke, Phys. Rev. E 49, 1073 (1994) MathSciNetCrossRefADSGoogle Scholar
  15. H. Lamba, C.J. Budd, Phys. Rev. E 50, 84 (1994) MathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Physics and Electric Information, NingXia UniversityYinchuanP.R. China
  2. 2.School of Sciences, HeBei University of TechnologyTianjinP.R. China

Personalised recommendations