A method based on a nonlinear generalized Heisenberg algebra to study the molecular vibrational spectrum

  • J. de Souza
  • N. M. Oliveira-Neto
  • C. I. Ribeiro-Silva
Molecular Physics and Chemical Physics

Abstract.

We propose a method, based on a generalized Heisenberg algebra (GHA), to reproduce the anharmonic spectrum of diatomic molecules. The theoretical spectrum generated by GHA allows us to fit the experimental data and to obtain the dissociation energy for the carbon monoxide molecule. Our outcomes are more accurate than the standard models used to study molecular vibrations, namely the Morse and the q-oscillator models and comparable to the perturbed Morse model proposed by Huffaker [CITE], for the first experimental levels. The dissociation energy obtained here is more accurate than all previous models.

PACS.

33.20.Tp Vibrational analysis 02.20.Uw Quantum groups 03.65.Fd Algebraic methods 32.30.Bv Radio-frequency, microwave, and infrared spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Huffaker, J. Chem. Phys. 64, 3175 (1976) CrossRefADSGoogle Scholar
  2. A. Mishra et al., J. Mol. Spectr. 232, 296 (2005) CrossRefGoogle Scholar
  3. H. Haken, H.C. Wolf, Molecular Physics And Elements Of Quantum Chemistry: Introduction To Experiments And Theory (Springer International, Berlin, 1995) Google Scholar
  4. C. Frankenberg et al., Science 308, 1010 (2005) CrossRefGoogle Scholar
  5. M. Wang, S. Ding, D. Feng, H. Liu, Phys. Rev. A 66, 022506 (2002) CrossRefADSGoogle Scholar
  6. E. Kim, S. Yamamoto, J. Mol. Spectr. 219, 296 (2003) CrossRefADSGoogle Scholar
  7. Z. Chang, H. Yan, Phys. Rev. A 44, 7405 (1991) CrossRefADSGoogle Scholar
  8. P.M. Morse, Phys. Rev. 34, 57 (1929) MATHCrossRefADSGoogle Scholar
  9. H. Partridge, S.R. Langhoff, J. Chem. Phys. 74, 2361 (1981) CrossRefADSGoogle Scholar
  10. M. Dulick et al., J. Mol. Spectr. 188, 14 (1998) CrossRefGoogle Scholar
  11. M. Selg, Phys. Scripta 60, 491 (1999) MATHMathSciNetCrossRefADSGoogle Scholar
  12. J. Plíva, J. Mol. Spectr. 193, 7 (1999) CrossRefADSGoogle Scholar
  13. W. Sun et al., Mol. Phys. 103, 17 (2005) CrossRefGoogle Scholar
  14. M. Dagher, M. Kobersi, H. Kobeissi, J. Comput. Chem. 16, 723 (1995) CrossRefGoogle Scholar
  15. M.N. Angelova, V.K. Dobrev, A. Frank, Eur. Phys. J. D 31, 27 (2004) CrossRefADSGoogle Scholar
  16. F. Iachello, R.D. Levine, J. Chem. Phys. 77, 3046 (1982) MathSciNetCrossRefADSGoogle Scholar
  17. W.G. Sun, W.Y. Ren, S.L. Hou, H. Feng, Mol. Phys. 103, 2335 (2005) CrossRefGoogle Scholar
  18. H.A. Witek et al., J. Chem. Phys. 116, 8396 (2002) CrossRefGoogle Scholar
  19. F. Iachello, Chem. Phys. Lett. 78, 581 (1981) MathSciNetCrossRefADSGoogle Scholar
  20. Mi Xie, Xi-Wen Hou, Zhong-Qi Mab, Chem. Phys. Lett. 262, 1 (1996) CrossRefGoogle Scholar
  21. R. Lemus, A. Frank, J. Mol. Spectr. 201, 198 (2000) CrossRefADSGoogle Scholar
  22. Y. Zheng, S. Ding, J. Mol. Spectr. 201, 109 (2000) CrossRefADSGoogle Scholar
  23. F. Iachello, S. Oss, Eur. Phys. J. D 19, 307 (2002) ADSGoogle Scholar
  24. A.J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989) MATHMathSciNetCrossRefADSGoogle Scholar
  25. L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989) Google Scholar
  26. E.M.F. Curado, M.A. Rego-Monteiro, J. Phys. A: Math. Gen. 34, 3253 (2001) MATHMathSciNetCrossRefADSGoogle Scholar
  27. M. Rego-Monteiro, I. Roditi, L.M.C.S. Rodrigues, Int. J. Mod. Phys. B 8, 3281 (1994) MathSciNetCrossRefADSGoogle Scholar
  28. D. Bonatsos, C. Daskaloyannis, Prog. Part. Nuc. Phys. 43, 537 (1999) CrossRefGoogle Scholar
  29. N.M. Oliveira-Neto, E.M.F. Curado, F.D. Nobre, M.A. Rego-Monteiro, Physica A 344, 573 (2004) MathSciNetCrossRefADSGoogle Scholar
  30. D. Bonatsos, P.P. Raychev, A. Faessler, Chem. Phys Lett. 178, 221 (1991) CrossRefADSGoogle Scholar
  31. M. Angelova, Phys. Part. Nucl. 33, S37 (2002) Google Scholar
  32. D. Bonatsos, C. Daskaloyannis, Phys. Rev. A 46, 75 (1992) MathSciNetCrossRefADSGoogle Scholar
  33. V. Spiridonov, Phys. Rev. Lett. 69, 398 (1992) MATHMathSciNetCrossRefADSGoogle Scholar
  34. D. Bonatsos, C. Daskaloyannis, K.D. Kokkotas, Phys. Rev. A 45, R6153 (1992) Google Scholar
  35. D. Bonatsos, C. Daskaloyannis, Chem. Phys. Lett. 203, 150 (1993) CrossRefADSGoogle Scholar
  36. K.D. Sviratcheva, C. Bahri, A.I. Georgieva, J.P. Draayer, Phys. Rev. Lett. 93, 152501 (2004) CrossRefADSGoogle Scholar
  37. A.W. Mantz et al., J. Mol. Spectr. 39, 180 (1971) CrossRefGoogle Scholar
  38. E.M.F. Curado, M.A. Rego-Monteiro, H.N. Nazareno, Phys. Rev. A 64, 012105 (2001) CrossRefADSGoogle Scholar
  39. V.B. Bezerra, E.M.F. Curado, M.A. Rego-Monteiro, Phys. Rev. D 65, 065020 (2002) MathSciNetCrossRefADSGoogle Scholar
  40. V.B. Bezerra, E.M.F. Curado, M.A. Rego-Monteiro, Phys. Rev. D 66, 085013 (2002) CrossRefADSGoogle Scholar
  41. L.S. Rothman et al., J. Quant. Spectr. Rad. Transfer. 82, 5 (2003) CrossRefGoogle Scholar
  42. J. de Souza, E.M.F. Curado, M.A. Rego-Monteiro, J. Phys. A (to be published) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • J. de Souza
    • 1
  • N. M. Oliveira-Neto
    • 1
    • 2
  • C. I. Ribeiro-Silva
    • 1
  1. 1.Centro Brasileiro de Pesquisas FísicasRio de Janeiro -Brazil
  2. 2.Departamento de FísicaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations