Non-classicality of photon added coherent and thermal radiations

Quantum Optics and Quantum Information

Abstract.

Production and analysis of non-Gaussian radiation fields has evinced a lot of attention recently. Simplest way of generating such non-Gaussians is through adding (subtracting) photons to Gaussian fields. Interestingly, when photons are added to classical Gaussian fields, the resulting states exhibit non-classicality. Two important classical Gaussian radiation fields are coherent and thermal states. Here, we study the non-classical features of such states when photons are added to them. Non-classicality of these states shows up in the negativity of the Wigner function. We also work out the entanglement potential, a recently proposed measure of non-classicality for these states. Our analysis reveals that photon added coherent states are non-classical for all seed beam intensities; their non-classicality increases with the addition of more number of photons. Thermal state exhibits non-classicality at all temperatures, when a photon is added; lower the temperature, higher is their non-classicality.

PACS.

42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements 03.65.Wj State reconstruction, quantum tomography 03.67.Mn Entanglement production, characterization, and manipulation 

QICS

02.10.+t Quantum-Classical Transition 01.30.+r Quantum states and dynamics as a resource for information processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quantum Interferometry, edited by F. De Martini et al. (VCH, Weinheim, 1996) Google Scholar
  2. W. Tittel, G. Ribordy, N. Gisin, Phys. World 11, 41 (1998); E. Knill, R. Laflamme, G. Milburn, Nature 409, 46 (2001) Google Scholar
  3. P. Zoller et al., Eur. Phys. J. D 36, 203 (2005) CrossRefGoogle Scholar
  4. J. Wenger, R. Tualle-Brouri, P. Grangier, Phys. Rev. Lett. 92, 153601 (2004) CrossRefADSGoogle Scholar
  5. M. Hillery, R.F. O'Connell, M.O. Scully, E.P. Wigner, Phy. Rep. 106, 121 (1984) CrossRefADSMathSciNetGoogle Scholar
  6. H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977) CrossRefADSGoogle Scholar
  7. R. Short, L. Mandel, Phys. Rev. Lett. 51, 384 (1983) CrossRefADSGoogle Scholar
  8. V.V. Dodonov, J. Opt. B: Quant. Semiclass. Opt. 4, R1 (2002) Google Scholar
  9. G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1991) CrossRefADSGoogle Scholar
  10. A. Zavatta, S. Viciani, M. Bellini, Science 306, 660 (2004); A. Zavatta, S. Viciani, M. Bellini, Phys. Rev. A 72, 023820 (2005) CrossRefADSGoogle Scholar
  11. M.S. Kim, E. Park, P.L. Knight, H. Jeong, Phys. Rev. A 71, 043805 (2005) CrossRefADSGoogle Scholar
  12. C.T. Lee, Phys. Rev. A 52, 3374 (1995) CrossRefADSGoogle Scholar
  13. G.N. Jones, J. Haight, C.T. Lee, Quant. Semiclass. Opt. 9, 411 (1997) CrossRefADSGoogle Scholar
  14. A.I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, Phys. Rev. Lett. 87, 050402 (2001); H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A.I. Lvovsky, J. Mlynek, S. Schiller, Opt. Lett. 26, 1714 (2001); A.I. Lvovsky, J.H. Shapiro, Phys. Rev. A 65, 033830 (2002); A. Zavatta, M. Bellini, P.L. Ramazza, F. Marin, F.T. Arecchi, J. Opt. Soc. Am. B 19, 1189 (2002); A. Zavatta, S. Viciani, M. Bellini, Phys. Rev. A 70, 053821 (2004); S.A. Babichev, B. Brezger, A.I. Lvovsky, Phys. Rev. Lett. 92, 047903 (2004) CrossRefADSGoogle Scholar
  15. J.K. Asboth, J. Calsamigila, H. Ritsch, Phys. Rev. Lett. 94, 173602 (2005) CrossRefADSGoogle Scholar
  16. M.G.A. Paris, Phys. Rev. A 59, 1615 (1999); P. van Loock, S.L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000); S. Scheel, L. Knöll, T. Opatrny, D.-G.Welsch, Phys. Rev. A 62, 043803 (2000); M.S. Kim, W. Son, V. Bužek, P.L. Knight, Phys. Rev. A 65, 032323 (2002); X.B. Wang, Phys. Rev. A 66, 024303 (2002); X.B. Wang, Phys. Rev. A 66, 064304 (2002); M.M. Wolf, J. Eisert, M.B. Plenio, Phys. Rev. Lett. 90, 047904 (2003); J.S. Ivan, N. Mukunda, R. Simon, e-print arXiv:quant-ph/0603255 CrossRefADSGoogle Scholar
  17. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R.J. Glauber, Phys. Rev. 131, 2766 (1963) MATHCrossRefADSMathSciNetGoogle Scholar
  18. W. Schleich, J.A. Wheeler, Nature 326, 574 (1987); S. Schiller et al., Phys. Rev. Lett. 77, 2933 (1996) CrossRefADSGoogle Scholar
  19. M. Hillery, Phys. Rev. A 35, 725 (1987) CrossRefADSGoogle Scholar
  20. C.T. Lee, Phys. Rev. A 44, R2775 (1991) Google Scholar
  21. A. Wünsche, V.V. Dodonov, O.V. Man'ko, V.I. Man'ko, Fortschr. Phys. 49, 1117 (2001); P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. Lett. 88, 153601 (2002); V.V. Dodonov, O.V. Man'ko, V.I. Man'ko, A. Wünsche, J. Mod. Opt. 47, 633 (2000); P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. A 69, 022104 (2004) CrossRefGoogle Scholar
  22. N. Lütkenhaus, S.M. Barnett, Phys. Rev. A 51, 3340 (1995) CrossRefGoogle Scholar
  23. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsBangalore UniversityBangaloreIndia

Personalised recommendations