Antiphase dynamics of sub-nanosecond microchip Cr,Yb:YAG self-Q-switched multimode laser

Optical Physics


Stable two-mode, and three-mode oscillations due to the spatial hole burning effect were observed experimentally with the increase of the pump power ratio in a laser-diode pumped sub-nanosecond microchip Cr,Yb:YAG self-Q-switched multimode laser. The stability of the output pulse trains was attributed to the mode coupling through antiphase dynamics between different modes. Modified multimode rate equations including the spatial hole-burning effect in the active medium and the non-linear absorption of the saturable absorber were proposed. Numerical simulations of the antiphase dynamics of such a laser were in good agreement with the experimental data, and the antiphase dynamics were explained by the evolution of the inversion population and the bleaching and recovery of the inversion population of the saturable absorber.


42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics 42.55.Xi Diode-pumped lasers 42.60.Gd Q-switching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Hadley, M.R. Beasley, Appl. Phys. Lett. 50, 621 (1987) CrossRefADSGoogle Scholar
  2. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986) ADSCrossRefGoogle Scholar
  3. K. Otsuka, Phys. Rev. Lett. 67, 1090 (1991) CrossRefADSGoogle Scholar
  4. K. Otsuka, M. Georgiou, P. Mandel, Jpn J. Appl. Phys. 31, L1250 (1992) Google Scholar
  5. K. Otsuka, P. Mandel, M. Georgiou, C. Etrich, Jpn J. Appl. Phys. 32, L318 (1993) Google Scholar
  6. K. Otsuka, Jpn J. Appl. Phys. 32, L1414 (1993) Google Scholar
  7. M.A. Larotonda, A.M. Yacomotti, O.E. Martinez, Opt. Commun. 169, 149 (1999) CrossRefADSGoogle Scholar
  8. Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, X. Ma, Opt. Commun. 232, 353 (2004) CrossRefADSGoogle Scholar
  9. E.A. Viktorov, P. Mandel, Opt. Lett. 22, 1568 (1997) ADSGoogle Scholar
  10. J.J. Zayhowski, J. Alloys Comp. 303–304, 393 (2000) Google Scholar
  11. J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, F. Gan, Chin. Phys. Lett. 19, 342 (2002) CrossRefADSGoogle Scholar
  12. J.J. Zayhowski, C. Dill III, Opt. Lett. 19, 1427 (1994) ADSGoogle Scholar
  13. A.A. Lagatsky, A. Abdolvand, N.V. Kuleshov, Opt. Lett. 25, 616 (2000) ADSGoogle Scholar
  14. G.J. Spuhler, R. Paschotta, M.P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, U. Keller, Appl. Phys. B 72, 285 (2001) ADSGoogle Scholar
  15. J. Dong, A. Shirakawa, S. Huang, Y. Feng, K. Takaichi, M. Musha, K. Ueda, A.A. Kaminskii, Laser Phys. Lett. 2, 387 (2005) CrossRefGoogle Scholar
  16. J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003) ADSGoogle Scholar
  17. S. Longhi, J. Opt. Soc. Am. B 11, 1098 (1994) ADSCrossRefGoogle Scholar
  18. G.K. Harkness, W.J. Firth, J. Mod. Opt. 39, 2023 (1992) ADSGoogle Scholar
  19. W. Kochner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999) Google Scholar
  20. C.L. Tang, H. Statz, G. Demars, J. Appl. Phys. 34, 2289 (1963) CrossRefADSGoogle Scholar
  21. J. Dong, P. Deng, J. Lumin. 104, 151 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute for Laser Science, University of Electro-CommunicationsTokyoJapan

Personalised recommendations