Optical study of radicals (OH, O, H, N) in a needle-plate bi-directional pulsed corona discharge

Plasma Physics

Abstract.

In this study, analysis of optical emission spectra are used for the detection of OH (A2Σ) radicals and O (3p5P), Hα (3P) and N (3p4P) active atoms produced by the high-voltage bi-directional pulsed corona discharge of N2 and H2O mixture gas in a needle-plate reactor at one atmosphere. The relative vibrational populations and the vibrational temperature of N2 (C, v') are determined. The effects of pulse peak voltage, pulse repetition rate and the added O2 flow rate on the relative populations of OH (A2Σ) radicals and O (3p5P), Hα (3P) and N (3p4P) active atoms are investigated. It is found that when pulse peak voltage and pulse repetition rate are increased, the relative populations of those excited states radicals rise correspondingly. The relative population of OH (A2Σ) radicals decreases with increasing the flow rate of oxygen. The relative populations of O (3p5P), Hα (3P) and N (3p4P) active atoms increase with the flow rate of oxygen at first and exhibit a maximum value at about 30 ml/min. When the flow rate of oxygen is increased further, the relative populations of those excited states active atoms decrease correspondingly. The main involved physicochemical processes also have been discussed.

PACS.

52.70.Kz Optical (ultraviolet, visible, infrared) measurements 52.80.Hc Glow; corona 82.33.Xj Plasma reactions (including flowing afterglow and electric discharges) 52.20.Hv Atomic, molecular, ion, and heavy-particle collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mizuno, J.S. Clements, R.H. Davis, IEEE Trans. Ind. Appl. 22, 516 (1986) Google Scholar
  2. R.P. Dahiya, S.K. Mishra, A. Veefkind, IEEE Trans. Plasma Sci. 21, 346 (1993) CrossRefGoogle Scholar
  3. A.T. Sugiarto, S. Ito, T. Ohshima, M. Sato, J.D. Skalny, J. Electrostat. 58, 135 (2003) CrossRefGoogle Scholar
  4. J.J. Lowke, R. Morrow, IEEE Trans. Plasma Sci. 23, 661 (1995) CrossRefGoogle Scholar
  5. A. Abou-Ghazala, S. Katsuki, K.H. Schoenbach, F.C. Dobbs, K.R. Moreira, IEEE Trans. Plasma Sci. 30, 1449 (2002) CrossRefGoogle Scholar
  6. M. Yamamoto, M. Nishioka, M. Sadakata, J. Electrostat. 56, 173 (2002) CrossRefGoogle Scholar
  7. T. Oda, J. Electrostat. 57, 293 (2003) CrossRefMathSciNetGoogle Scholar
  8. U. Roland, F. Holzer, F.D. Kopinke, Catal. Today 73, 315 (2002) CrossRefGoogle Scholar
  9. N.M. Šišović, G.Lj. Majstorović, N. Konjević, Eur. Phys. J. D 32, 347 (2005) CrossRefGoogle Scholar
  10. W. Ebeling, H. Hache, M. Spahn, Eur. Phys. J. D 23, 265 (2003) CrossRefADSGoogle Scholar
  11. K.P. Yan, E.J.M. van Heesch, A.J.M. Pemen, P.A.H.J. Huijbrechts J. Electrostat. 51-52, 218 (2001) Google Scholar
  12. F. Liu, W.C. Wang, S. Wang, C.S. Ren, Y.N. Wang, Plasma Sci. Technol. 7, 2851 (2005) Google Scholar
  13. V.A. Lozovsky, I. Derzy, S. Cheskis, Chem. Phys. Lett. 284, 407 (1998) CrossRefGoogle Scholar
  14. A.A. Joshi, B.R. Locke, P. Arce, W.C. Finney, J. Hazard. Mater. 41, 3 (1995) CrossRefGoogle Scholar
  15. S.S. Lee et al., Science 263, 1596 (1994) Google Scholar
  16. A. Gijcquel et al., Cur. Appl. Phys. 1, 479 (2001) CrossRefGoogle Scholar
  17. H. Umemoto et al., J. Non-Cryst. Sol. 299-302, 9 (2002) Google Scholar
  18. H. Kiyooka, O. Matsumoto, Plasma Chem. Plasma Proc. 16, 547 (1996) CrossRefGoogle Scholar
  19. R. Ono, T. Oda, IEEE Trans. Ind. Appl. 37, 709 (2001) CrossRefGoogle Scholar
  20. R. Ono, T. Oda, IEEE Trans. Ind. Appl. 36, 82 (2000) CrossRefGoogle Scholar
  21. R. Ono, T. Oda, in Proceedings of Thirty-Fourth IAS Annual Meeting, Industry Applications Conference, Conference Record of the 1999 IEEE. 3 (1999), p. 1461 Google Scholar
  22. R. Ono, T. Oda, J. Phy. D: Appl. Phys. 35, 2133 (2002) CrossRefADSGoogle Scholar
  23. B. Sun, M. Sato, A. Harano, J.S. Clements, J. Electrostat. 43, 115 (1998) CrossRefGoogle Scholar
  24. Z. Falkenstein, J. Appl. Phys. 81, 7158 (1997) CrossRefADSGoogle Scholar
  25. Z. Su, H.H. Kim, M. Tsutsui, K. Takashima, A. Mizuno, in Proceedings of Thirty-Fourth IAS Annual Meeting, Industry Applications Conference, Conference Record of the 1999 IEEE. 3 (1999), p. 1473 Google Scholar
  26. C.W. Park, J.W. Hahn, D.N. Shin, in Proceedings of the Pacific Rim Conference on Lasers and Electro-Optics. CLEO/Pacific Rim '1999. 2 (1999), p. 356 Google Scholar
  27. W.C. Wang, F. Liu, J.L. Zhang, C.S. Ren, Spectrosc. Spect. Anal. 24, 1288 (2004) (in Chinese) Google Scholar
  28. S.K. Tang et al., J. Vac. Sci. Technol. A 18, 2213 (2000) CrossRefGoogle Scholar
  29. W.C. Wang et al., Chem. Phys. Lett. 377, 512 (2003) CrossRefGoogle Scholar
  30. W.C. Wang et al., J. Phys. D: Appl. Phys. 37, 1185 (2004) CrossRefGoogle Scholar
  31. M. Horvath, E. Kiss, J. Electrostat. 63, 993 (2005) CrossRefGoogle Scholar
  32. R.B. Zhang, Y. Wu, C.Y. Jin, J. Li, J. Dal. Univ. Technol. 43, 719 (2003) Google Scholar
  33. R.B. Zhang, Y. Wu, C.Y. Jin, J. Li, J. Zhongyuan Inst. Technol. 14, 36 (2003) Google Scholar
  34. O. Eichwald et al., J. Appl. Phys. 82, 4781 (1997) CrossRefGoogle Scholar
  35. S.N. Suchard, Spectroscopic Data: Vol. 1, Homonuclear Diatomic Molecules Part B (The Aerospace Corporation Los Angeles, California, 1975) Google Scholar
  36. W.C. Wang, F. Liu, J.L. Zhang, Y.N. Wang, Spectrochimica Acta A 59, 3267 (2003) CrossRefGoogle Scholar
  37. W.C. Wang, J.L. Zhang, F. Liu, Y. Liu, Y.N. Wang, Vacuum 74, 333 (2004) CrossRefGoogle Scholar
  38. B.M. Penetrante, J.N. Bardsley, M.C. Hsiao, Jpn J. Appl. Phys. 36, 5007 (1997) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of TechnologyDalianP.R. China

Personalised recommendations