Friedel theorem for one dimensional relativistic spin-1/2 systems

Atomic and Molecular Collisions
  • 37 Downloads

Abstract.

The Friedel sum rule is generalized to relativistic systems of spin-1/2 particles in one dimension. The change of the total energy due to the presence of an impurity is studied. The relation of the sum rule with the relativistic Levinson theorem is presented. Density oscillations in such systems are discussed. Since the Friedel theorem has been of major importance in understanding the impurity scattering in materials, the present results may be useful to explain some phenomena in one dimensional atomic chain, quantum wire, and fermionic many body systems.

PACS.

34.10.+x General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) 11.80.Et Partial-wave analysis 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding 73.21.Hb Quantum wires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Friedel, J. Philos. Mag. 43, 153 (1952); J. Friedel, Adv. Phys. 3, 446 (1953); J. Friedel, Nuovo Cim. Supl. 7, 287 (1958) MATHGoogle Scholar
  2. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, New York, 1972), p. 159 Google Scholar
  3. G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 2000), p. 195 Google Scholar
  4. J.S. Langer, V. Ambegaokar, Phys. Rev. 121, 1090 (1961) CrossRefADSMATHGoogle Scholar
  5. D.C. Langreth, Phys. Rev. 150, 516 (1966) CrossRefADSGoogle Scholar
  6. H. Johannesson, N. Andrei, C.J. Bolech, Phys. Rev. B 68, 075112 (2003) CrossRefADSGoogle Scholar
  7. H. Johannesson, C.J. Bolech, N. Andrei, Phys. Rev. B 71, 195107 (2005) CrossRefADSGoogle Scholar
  8. D.H. Lin, Phys. Rev. A 72, 012701 (2005) CrossRefADSGoogle Scholar
  9. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988) CrossRefADSGoogle Scholar
  10. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.C. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, J. Phys. C 21, L209 (1988) Google Scholar
  11. Z.I. Alferov, Rev. Mod. Phys. 73, 767 (2001) CrossRefADSGoogle Scholar
  12. J.N. Crain, D.T. Pierce, Science 307, 703 (2005) CrossRefADSGoogle Scholar
  13. G. Rubio, N. Agrait, S. Vieira, Phys. Rev. Lett. 76, 2302 (1996) CrossRefADSGoogle Scholar
  14. A. Rosch, N. Andrei, Phys. Rev. Lett. 85, 1092 (2000) CrossRefADSGoogle Scholar
  15. Semiconductor Spintronics and Quantum Computation, edited by D.D. Awschalom, N. Samarth, D. Loss (Springer-Verlag, Berlin, 2002) Google Scholar
  16. A.V. Moroz, C.H.W. Barnes, Phys. Rev. B 60, 14272 (1999); F. Mireles, G. Kirczenow, Phys. Rev. B 64, 024426 (2001); J.C. Egues, G. Burkard, D. Loss, Phys. Rev. Lett. 89, 176401 (2002) CrossRefADSGoogle Scholar
  17. M. Governale, U. Zülicke, Phys. Rev. B 66, 073311 (2002) CrossRefADSGoogle Scholar
  18. R. Egger, H. Grabert, Phys. Rev. Lett. 75, 3505 (1995) CrossRefADSGoogle Scholar
  19. A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge, 2003), Ch. 14 Google Scholar
  20. Q.G. Lin, Eur. Phys. J. D 7, 515 (1999) CrossRefADSGoogle Scholar
  21. N. Levinson, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 25, No. 9 (1949) Google Scholar
  22. R.G. Newton, J. Math. Phys. 1, 319 (1960); R.G. Newton, J. Math. Phys. 18, 1348 (1977); R.G. Newton, J. Math. Phys. 18, 1582 (1977); R.G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982) CrossRefMATHGoogle Scholar
  23. F.G. Fumi, Phil. Mag. 46, 1007 (1955) Google Scholar
  24. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970), p. 231 Google Scholar
  25. N.J. Craig, J.M. Taylor, E.A. Lester, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 304, 565 (2004); L.I. Glazman, R.C. Ashoori, Science 304, 524 (2004) CrossRefADSGoogle Scholar
  26. M. Sassoli de Bianchi, J. Math. Phys. 35, 2719 (1994) CrossRefADSMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsNational Sun Yat-sen UniversityKaohsiungTaiwan

Personalised recommendations