Interaction of polar molecules with a resonant RF electric field: strong deflection of a NO molecular beam

Interaction of Molecules with Fields

Abstract.

Deflection of a cold supersonic NO beam seeded in He has been observed when these molecules interact with both static and a resonant oscillating electric field. The NO beam splits into two beams each one deflecting about 0.5° towards the positive and negative direction of the Stark field when the employed resonant frequency between the two Stark levels of the NO molecule is 1515 kHz. This deflection angle is about four orders of magnitude higher than the value one would expect from the NO dipole moment and the employed RF field gradient. This phenomenon suggests the possibility of a significant translational motion perpendicular to the beam axis, which is induced by the resonant RF electric field on the cold and high-density supersonic beam.

PACS.

32.60.+i Zeeman and Stark effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Montero, A.G. Ureña, J.O. Cáceres, M. Morato, J. Najera, H.J. Loesch, Eur. Phys. J. D 26, 261 (2003) CrossRefADSGoogle Scholar
  2. K. Gasmi, A.G. Ureña, Chem. Phys. Lett. 410, 82 (2005), and references cited therein. CrossRefGoogle Scholar
  3. M. Morato, K. Gasmi, C. Montero, A.G. Ureña, Chem. Phys. Lett. 392, 255 (2004); see also A.G. Ureña et al., Chem. Phys. Lett. 341, 495 (2001) CrossRefGoogle Scholar
  4. The molecular beam apparatus used in reference ref1 is different from the one used here. They have different beam geometries and the resonant unit is allocated at a distinct distance from the detector. This explains the difference in the required minimum deflection angle of 0.7° in reference ref1 and the experimentally observed beam deflection of 0.5° in the present experiment Google Scholar
  5. N.F. Ramsey, Molecular Beams (Oxford University Press, Oxford 1956); see also B.H. Bransder, C.J. Joachain, in Physics of Atoms and Molecules (Longman, London, 1983), p. 558 Google Scholar
  6. J.H. van Vleck The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, Oxford, 1932) Google Scholar
  7. G. Herzberg, in Molecular Spectra and Molecular Structure, Spectra of diatomic Molecules (Van Nostrand Reinhold Company, New York, 1950), Vol. I, pp. 307–308 Google Scholar
  8. R.M. Newmann, Astrophys. J. 161, 779 (1970) CrossRefADSGoogle Scholar
  9. B. Friedrich, D. Herschbach, J. Chem. Phys. 111, 6157 (1999) CrossRefADSMathSciNetGoogle Scholar
  10. N.H. Nahler, R. Baumfalk, U. Buck, Z. Bihary, R.B. Gerber, B. Friedrich, J. Chem. Phys. 119, 224 (2003) CrossRefADSGoogle Scholar
  11. N.H. Nahler, M. Farnik, U. Buck, Chem. Phys. 301, 173 (2004) CrossRefGoogle Scholar
  12. V. Aquilanti, D. Ascenzi, D. Cappelleti, F. Pirani, Nature 371, 399 (1994) CrossRefADSGoogle Scholar
  13. R.M. Hill, T.F. Gallagher, Phys. Rev. A 12, 451 (1975) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Instituto Pluridisciplinar, Unidad de Láseres y Haces Moleculares, Universidad Complutense de MadridMadridSpain

Personalised recommendations