VUV-heating of plasma layers and their use as ultrafast switches

Topical issue: Correlated matter in radiation fields: from femtosecond spectroscopy to the free electron laser


We report on new possibilities to generate solid-density plasma at extreme energy density by intense VUV beams. Here we consider 100 fs pulses of 30 eV photons focused to 1016 and 1018 W/cm2. The temperature evolution in 50 nm thick aluminum foils is discussed on the basis of simulations, performed with the one-dimensional radiation hydrodynamics code MULTI-fs. For 30 eV photons, the foil is shown to switch from transmission to reflection mode on a femto-second time-scale; this is due to the rapid change of the plasma frequency during laser heating which may turn an initially transparent Al-foil into an opaque one. The switching-time depends on the intensity of the laser pulse. Also layered heating structures inside the foil are discussed which occur due to reflection at the rear surface.


Energy Density Laser Pulse Aluminum Foil Plasma Frequency Reflection Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Th. Tschenscher, G. Materlik, TESLA Technical Design Report, Part V, The X-Ray Free Electron Laser, DESY, Hamburg, 2002; see also Google Scholar
  2. See the website for information on the LCLS facility Google Scholar
  3. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Clarendon Press, Oxford, 2004) Google Scholar
  4. R.W. Lee et al., J. Opt. Soc. Am. B 20, 770 (2003) Google Scholar
  5. S.J. Moon, K.B. Fournier, H. Scott, H.K. Chung, R.W. Lee, J. Quant. Spec. Rad. Transfer 81, 311 (2003) CrossRefGoogle Scholar
  6. J. Meyer-ter-Vehn et al., Dense plasma physics studied with XFELs, in Inertial Fusion Sciences and Applications 2003, edited by B.A. Hammel et al. (American Nuclear Society, La Grange Park, Illinois, USA, 2004), p. 912ff Google Scholar
  7. W. Theobald, R. Hä\(\ss\)ner, K. Kingham, R. Sauerbrey, R. Fehr, D.O. Gericke, M. Schlanges, W.D. Kraeft, K. Ishikawa, Phys. Rev. E 59, 3544 (1999) CrossRefGoogle Scholar
  8. K. Eidmann et al., J. Quant. Spec. Rad. Trans. 65, 173 (2000) CrossRefGoogle Scholar
  9. R. Ramis, R. Schmalz, J. Meyer-ter-Vehn, Comp. Phys. Commun. 49, 475 (1988) CrossRefGoogle Scholar
  10. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Hüller, Phys. Rev. E 62, 1202 (2000) CrossRefGoogle Scholar
  11. See website Google Scholar
  12. A. Krenz, Diploma thesis, Technische Universität München, 2003 Google Scholar
  13. A. Kemp, Das Zustandsgleichungs-Modell MPQEOS für heisse, dichte Materie, Max-Planck-Institute for Quantum Optics, Report MPQ 229 (1998) Google Scholar
  14. K. Eidmann, Laser Part. Beams 12, 223 (1994) Google Scholar
  15. G.D. Tsakiris, K. Eidmann, J. Quant. Spectrosc. Radiat. Transfer 38, 353 (1987) CrossRefGoogle Scholar
  16. A. Saemann et al., Phys. Rev. Lett. 82, 4843 (1999) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations