Advertisement

The D1Π state of the NaRb molecule

  • O. Docenko
  • M. Tamanis
  • R. Ferber
  • A. Pashov
  • H. Knöckel
  • E. Tiemann
Molecular Physics and Chemical Physics

Abstract.

We present a detailed experimental study of the D1Π state of the NaRb molecule by means of Fourier transform spectroscopy of laser induced fluorescence. The entire data field for the D1Π state of Na85Rb and Na87Rb consists of rovibrational levels with v=0-39 and J=1-200. The data were incorporated into a direct fit of a single potential energy curve to the level energies using the Inverted Perturbation Approach method. The D1Π state q factors, which describe the Λ-doubling, have been obtained in a wide range of rotational and vibrational quantum numbers. Analysis revealed several perturbation regions in the D1Π state.

Keywords

Fourier Transform Potential Energy Quantum Number Quantum Computing Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Tab-I.pdf (47 kb)
PDF file (48k)
Tab-II.pdf (75 kb)
PDF file (77k)
Tab-III.pdf (70 kb)
PDF file (72k)
Tab-IV.pdf (44 kb)
PDF file (45k)
Tab-V.pdf (48 kb)
PDF file (50k)

References

  1. G.D. Telles, L.G. Marcassa, S.R. Muniz, S.G. Miranda, A. Antunes, C. Westbrook, V.S. Bagnato, Phys. Rev. A 59, R23 (1999) Google Scholar
  2. S.B. Weiss, M. Bhattacharya, N.P. Bigelow, Phys. Rev. A 68, 042708 (2003) Google Scholar
  3. O. Docenko, O. Nikolayeva, M. Tamanis, R. Ferber, E.A. Pazyuk, A.V. Stolyarov, Phys. Rev. A 66, 052508 (2002) CrossRefGoogle Scholar
  4. O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 69, 042503 (2004) CrossRefGoogle Scholar
  5. N. Takahashi, H. Katô, J. Chem. Phys. 75, 4350 (1981) CrossRefGoogle Scholar
  6. A. Zaitsevskii, S.O. Adamson, E.A. Pazyuk, A.V. Stolyarov, O. Nikolayeva, O. Docenko, I. Klincare, M. Auzinsh, M. Tamanis, R. Ferber, R. Cimiraglia, Phys. Rev. A 63, 052504 (2001) CrossRefGoogle Scholar
  7. O. Nikolayeva, I. Klincare, M. Auzinsh, M. Tamanis, R. Ferber, E.A. Pazyuk, A.V. Stolyarov, A. Zaitsevskii, R. Cimiraglia, J. Chem. Phys. 113, 4896 (2000) Google Scholar
  8. I. Klincare, M. Tamanis, R. Ferber, Chem. Phys. Lett. 382, 593 (2003) CrossRefGoogle Scholar
  9. M. Korek, A.R. Allouche, M. Kobeissi, A. Chaalan, M. Dagher, K. Fakherddin, M. Aubert-Frecon, Chem. Phys. 256, 1 (2000) CrossRefGoogle Scholar
  10. P. Juncar, J. Pinar, J. Hamon, A. Chartier, Metrologia 17, 77 (1981) CrossRefGoogle Scholar
  11. O. Allard, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 66, 042503 (2002) CrossRefGoogle Scholar
  12. A. Pashov, W. Jastrzebski, P. Kowalczyk, Comput. Phys. Commun. 128, 622 (2000) Google Scholar
  13. A. Grochola, W. Jastrzebski, P. Kowalczyk, A. Pashov, J. Chem. Phys. 121, 5754 (2004) CrossRefPubMedGoogle Scholar
  14. W.H. Press, S.A. Teukolski, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77 (Cambridge Unversity Press, Cambridge, 1992) Google Scholar
  15. B. Bussery, Y. Achkar, M. Aubert-Frecon, Chem. Phys. 116, 319 (1987) Google Scholar
  16. A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Knöckel, E. Tiemann, in preparation Google Scholar
  17. M. Tamanis, R. Ferber, A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov, Hongmin Chen, Jiangbing Qi, Henry Wang, W.C. Stwalley, J. Chem. Phys. 117, 7980 (2002) Google Scholar
  18. W. Jastrzebski, P. Kortyka, P. Kowalczyk, O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, Eur. Phys. J. D 36, 57 (2005) Google Scholar
  19. R.J. Le Roy, J. Mol. Spectrosc. 191, 223 (1998) CrossRefPubMedGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • O. Docenko
    • 1
  • M. Tamanis
    • 1
  • R. Ferber
    • 1
  • A. Pashov
    • 2
  • H. Knöckel
    • 3
  • E. Tiemann
    • 3
  1. 1.Department of Physics and Institute of Atomic Physics and Spectroscopy, University of LatviaRigaLatvia
  2. 2.Department of PhysicsSofia UniversitySofiaBulgaria
  3. 3.Institut für Quantenoptik, Universität HannoverHannoverGermany

Personalised recommendations