Advertisement

Electronic excitation of ice monomers on Au(111) by scanning tunneling microscopy

Vibrational spectra and induced processes
  • H. Gawronski
  • K. Morgenstern
  • K.-H. Rieder
Surface Processes

Abstract.

Scanning tunneling microscopy, inelastic tunneling spectroscopy, and electron induced manipulation are used to investigate electronic excitation of D2O monomers and small clusters adsorbed at the elbows of the Au(111) reconstruction. Diffusion of molecules, dissociation of clusters, and rearrangement of the reconstruction is induced by electronic excitation. Threshold energies of between 200 and 250 meV and of 446 meV are explained by combined vibrational modes of D2O molecules. External vibrational modes of D2O molecules on Au(111) are identified by inelastic tunneling spectroscopy at ≈18, 30, and 41 meV.

Keywords

Spectroscopy Microscopy Neural Network State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Henderson, Surf. Sci. Rep. 46, 1 (2002) CrossRefGoogle Scholar
  2. M. Morgenstern, T. Michely, G. Comsa, Phys. Rev. Lett. 77, 703 (1996) PubMedGoogle Scholar
  3. J. Cerda, A. Michaelides, M.L. Bocquect, P.J. Feibelman, T. Mitsui, M. Rose, E. Fomine, M. Salmeron, Phys. Rev. Lett. 93, 116101 (2004) CrossRefPubMedGoogle Scholar
  4. K. Morgenstern, K.-H. Rieder, Chem. Phys. Lett. 116, 5746 (2002) Google Scholar
  5. K. Mogenstern, J. Nieminen, Phys. Rev. Lett. 88, 66102 (2002) Google Scholar
  6. K. Morgenstern, Surf. Sci. 504, 293 (2002) CrossRefGoogle Scholar
  7. K. Morgenstern, J. Nieminen, J. Chem. Phys. 120, 10786 (2004) CrossRefPubMedGoogle Scholar
  8. K. Morgenstern, H. Gawronski, M. Mehlhorn, K.-H. Rieder, J. Mod. Opt. 51, 2813 (2004) Google Scholar
  9. K. Morgenstern, K.-H. Rieder, J. Chem. Phys. 116, 5746 (2002) CrossRefGoogle Scholar
  10. T. Mitsumi, M.K. Rose, E. Fomin, D.F. Ogletree, M. Salmeron, Science 297, 1850 (2002) CrossRefPubMedGoogle Scholar
  11. K. Jacobi, K. Bedürftig, Y. Wang, G. Ertl, Surf. Sci. 472, 9 (2001) Google Scholar
  12. A. Michaelides, V.A. Ranea, P.L. Andres, D.A. King, Phys. Rev. Lett. 90, 216102 (2003) CrossRefPubMedGoogle Scholar
  13. B. Voigtländer, G. Meyer, N.M. Amer, Phys. Rev. B 44, 10354 (1991) CrossRefGoogle Scholar
  14. G. Pirug, H.P. Bonzel, Surf. Sci. 405, 87 (1998) CrossRefGoogle Scholar
  15. V. Simic-Milosevic, Ph.D. thesis, Freie Universität Berlin (2005) Google Scholar
  16. W. Ho, J. Chem. Phys. 117, 11033 (2004) CrossRefGoogle Scholar
  17. M. Lannoo, P. Friedel, Atomic and Electronic Structure of Surfaces, Series in Surface Science (Springer, 1991) Google Scholar
  18. B.J. Hinch, L.H. Dubois, J. Chem. Phys. 96, 3262 (1992) CrossRefGoogle Scholar
  19. K. Morgenstern, J. Nieminen, J. Chem. Phys. 120, 10786 (2004) CrossRefPubMedGoogle Scholar
  20. K. Jacobi, private communication Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Freie Universität Berlin, Institut für ExperimentalphysikBerlinGermany
  2. 2.Institut für FestkörperphysikHannoverGermany

Personalised recommendations