Mesoscopic linear alignment and thermal-relaxation dynamics of aggregated gold nanorods

  • O.-H. Kwon
  • S. Lee
  • D.-J. Jang
Self-organized Systems and Nanostructures


Aqueous gold nanorod colloids aggregated by Cl- are further assembled into linearly aligned structures of linear bundles during evaporation on TEM grids. Gold nanorods in bundles are also oriented in nearly head-to-tail shapes in the microscopic scale. Induced dipolar long-range interactions in the mesoscopic scale are suggested to drive gold nanorods to aggregate. Although surface-plasmon absorption at transverse resonances decreases, that at longitudinal resonances increases with aggregation. The photon-thermalized heat of the dispersed and the aggregated gold nanorods dissipates to immediately surrounding media on the time scales of 100 and 800 ps, respectively.


Neural Network Evaporation Nonlinear Dynamics Quantum Computing Gold Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004) Google Scholar
  2. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303, 1348 (2004) Google Scholar
  3. F. Yan, W.A. Goedel, Nano Lett. 4, 1193 (2004) Google Scholar
  4. J.-H. Choy, E.-S. Jang, J.-H. Won, J. H. Chung, D.-J. Jang, Y.-W. Kim, Appl. Phys. Lett. 84, 287 (2004) Google Scholar
  5. S. De, A. Pal, N.R. Jana, T. Pal, J. Photochem. Photobiol. A 131, 111 (2000) Google Scholar
  6. A.N. Shipway, M. Lahav, R. Gabai, I. Willner, Langmuir 16, 8789 (2000) Google Scholar
  7. M. Darder, E. Casero, D.J. Diaz, H.D. Abruna, F. Pariente, E. Lorenzo, Langmuir 16, 9804 (2000) Google Scholar
  8. C.G. Wing, P. Santiago, J.A. Ascencio, A. Camacho, M. Jose-Yacaman, Appl. Phys. A 71, 237 (2000) Google Scholar
  9. D. Lee, S. Lee, H. Kim, D.-J. Jang, Eur. Phys. J. D 24, 303 (2003) Google Scholar
  10. E.G. Timoshenko, R. Basovsky, Y.A. Kuznetsov, Colloids Surf. A 190, 129 (2001) Google Scholar
  11. T. Vossmeyer, E. DeIonno, J.R. Heath, Angew. Chem. Int. Ed. Engl. 36, 1080 (1997) Google Scholar
  12. W.P. McConnel, J.P. Novak, L.C. Brousseau, R.R. Fuierer, R.C. Tenent, D.L. Feldheim, J. Phys. Chem. B 104, 8925 (2000) Google Scholar
  13. A.A. Lazarides, K.L. Kelly, T.R. Jensen, G.C. Schatz, J. Mol. Struct. 529, 59 (2000) Google Scholar
  14. Nanosystems, Molecular Machinery, Manufacturing and Computation, edited by K.E. Drexler (Wiley, New York, 1992) Google Scholar
  15. G. Schmid, Chem. Rev. 92, 1709 (1992) Google Scholar
  16. S.M. Marinakos, L.L. Brousseau, A. Jones, D.L. Feldheim, Chem. Mater. 10, 1214 (1998) Google Scholar
  17. A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996) Google Scholar
  18. T.A. Taton, R.C. Mucic, C.A. Mirkin, R.L. Letsinger J. Am. Chem. Soc. 122, 6305 (2000) Google Scholar
  19. J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, G.C. Schatz, J. Am. Chem. Soc. 122, 4640 (2000) Google Scholar
  20. C.S. Ah, S.D. Hong, D.-J. Jang, J. Phys. Chem. B 105, 7871 (2001) Google Scholar
  21. C.S. Ah, H.S. Han, K. Kim, D.-J. Jang, J. Phys. Chem. B 104, 8153 (2000) Google Scholar
  22. S.J. Kim, T.G. Kim, C.S. Ah, K. Kim, D.-J. Jang, J. Phys. Chem. B 108, 880 (2004) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Chemistry, Seoul National UniversitySeoulKorea

Personalised recommendations