Oxidation activity of Au nanoparticles on aerogel supports

  • Y. Tai
  • Y. Ochi
  • F. Ohashi
  • K. Tajiri
  • J. Murakami
  • M. Daté
  • S. Tsubota
Chemical Reactivity, Nanocatalysis and Photochemistry Magnetism and Spintronics

Abstract.

We have prepared titania aerogel and titania-coated silica aerogel incorporating thiol-capped Au nanoparticles. Both composite materials showed high CO oxidation activity after they were calcined at 673 K. Compositional and morphological changes driven by calcination were evaluated with thermogravimetry and X-ray diffractometry. From the results, it was suggested that the nanoparticles transformed from a faulted to a near-regular FCC structure presumably in concert with the formation of firm contacts between the nanoparticles and the gel substrates. While the diameters of the Au particles in the titania aerogel considerably increased upon calcination, those in the titania-coated silica aerogel were almost unchanged. As a consequence, the latter composite aerogel showed higher activity for oxidation of CO.

Keywords

Titania Neural Network High Activity Composite Material Complex System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Haruta, Chem. Record 3, 75 (2003) Google Scholar
  2. B.S. Uphade, T. Akita, T. Nakamura, M. Haruta, J. Catal. 209, 331 (2002) Google Scholar
  3. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301, 935 (2003) Google Scholar
  4. L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Woeste, U. Heiz, H. Hakkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003) Google Scholar
  5. A. Sanchez, S. Abbet, U. Heiz, W.D. Schneider, H. Hakkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999) Google Scholar
  6. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998) Google Scholar
  7. Y. Tai, M. Watanabe, K. Kaneko, S. Tanemura, T. Miki, J. Murakami, K. Tajiri, Adv. Mater. 13, 1611 (2001) Google Scholar
  8. Y. Tai, J. Murakami, K. Tajiri, F. Ohashi, M. Dat\(\acute{\rm e}\), S. Tsubota, Appl. Catal. A-Gen. 268, 183 (2004) Google Scholar
  9. G. Dagan, M. Tomkiewics, J. Phys. Chem. 97, 12651 (1993) Google Scholar
  10. K. Tajiri, Y. Tai, Proceedings of the 20th International Japan-Korea Seminar on Ceramics (2003), p. 561 Google Scholar
  11. S. Srinivasan, A.K. Datye, M. Hampden-Smith, I.E. Wachs, G. Deo, J.M. Jehng, A.M. Turek, C.H.F. Peden, J. Catal. 131, 260 (1991) Google Scholar
  12. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 801 (1994) Google Scholar
  13. K. Ruth, M. Hayes, R. Burch, S. Tsubota, M. Haruta, Appl. Catal. B: Environ. 24, L133 (2000) Google Scholar
  14. C.J. Brinker, G.W. Scherer, Sol-gel Science (Academic Press, 1989), p. 551 Google Scholar
  15. R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleaveland, W.D. Luedtke, U. Landman, Adv. Mater. 8, 428 (1996) Google Scholar
  16. J.J. Pietron, R.M. Stroud, D.R. Rolison, Nano Lett. 2, 545 (2002) Google Scholar
  17. T.G. Schaaff, M.N. Shafigullin, J.T. Khoury, I. Vezmar, R.L. Whetten, W.G. Cullen, P.N. First, C. Gutierrez-Wing, J. Ascensio, M. Jose-Yacaman, J. Phys. Chem. B 101, 7885 (1997) Google Scholar
  18. T. Yonezawa, K. Yasui, N. Kimizuka, Langmuir 17, 271 (2001). Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • Y. Tai
    • 1
  • Y. Ochi
    • 1
  • F. Ohashi
    • 1
  • K. Tajiri
    • 1
  • J. Murakami
    • 2
  • M. Daté
    • 3
  • S. Tsubota
    • 3
  1. 1.Materials Research Institute for Sustainable Development, Chubu Research Base of National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
  2. 2.Nanotechnology Research InstituteTsukubaJapan
  3. 3.Research Institute for Innovation in Sustainable ChemistryTsukubaJapan

Personalised recommendations