Structure of unsupported antimony nanoclusters

  • M. Kaufmann
  • A. Wurl
  • J. G. Partridge
  • S. A. Brown
Electronic and Structural Properties

Abstract.

In this study we present results of electron diffraction experiments on unsupported antimony nanoclusters with mean sizes in the range of 20-40 nm. An inert-gas aggregation source was used to produce the cluster beam. Electron diffraction patterns reveal phase transitions between crystalline and amorphous phases as well as particles composed of Sb4 tetramers. The diffraction results are correlated with electron microscope investigations of the morphology of films formed by deposition of the clusters.

Keywords

Spectroscopy Neural Network Phase Transition State Physics Diffraction Pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Holleman, N. Wiberg, Inorganic Chemistry (Academic Press, San Diego, 2001) Google Scholar
  2. T.M. Bernhardt et al., Angew. Chem. Int. Ed. 42, 199 (2003) Google Scholar
  3. K. Sattler et al., Phys. Lett. 87A, 418 (1982) Google Scholar
  4. G.D. Stein, Metal cluster beams and electron diffraction: Deviations from the bulk state of matter, unpublished, 1982 Google Scholar
  5. L. Sun et al., Mater. Sci. Eng. A 217, 15 (1996) Google Scholar
  6. B.D. Hall et al., Rev. Sci. Instr. 62, 1481 (1991) Google Scholar
  7. D. Reinhard et al., Phys. Rev. B 55, 7868 (1997) Google Scholar
  8. D. Reinhard et al., Phys. Rev. Lett. 79, 1459 (1997) Google Scholar
  9. M. Hyslop et al., Eur. Phys. J. D 16, 233 (2001) Google Scholar
  10. A. Wurl et al., Eur. Phys. J. D 16, 205 (2001) Google Scholar
  11. J.G. Partridge et al., Nanotechnology 15, 1382 (2004) Google Scholar
  12. A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (W.H. Freeman and Company, San Francisco and London, 1963) Google Scholar
  13. R.W.G. Wyckoff, Crystal Structures (Interscience Publishers, New York, 1963), Vol. 1 Google Scholar
  14. V. Sundararajan, V. Kumar, J. Chem. Phys. 102, 9631 (1995) Google Scholar
  15. B.V. Reddy, P. Jena, Chem. Phys. Lett. 288, 253 (1998) Google Scholar
  16. X.-W. Zou, Z.-Z. Jin, S.-Q. Tang, Phys. Stat. Sol. (b) 142, 9 (1987) Google Scholar
  17. Diffraction patterns from fcc particles are shown in D. Reinhard et al., Phys. Rev. B 58, 4917 (1998) Google Scholar
  18. J.A. Prins, Nature 131, 760 (1933) Google Scholar
  19. H. Richter, H. Berckhemer, G. Breitling, Z. Naturforschg, 9A, 236 (1954) Google Scholar
  20. P. Melinon et al., Phys. Rev. B. 44, 12562 (1991) Google Scholar
  21. B.D. Hall, J. Appl. Phys. 87, 1666 (2000) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • M. Kaufmann
    • 1
    • 2
  • A. Wurl
    • 1
    • 2
  • J. G. Partridge
    • 1
    • 2
  • S. A. Brown
    • 1
    • 2
  1. 1.Nanostructure Engineering Science and Technology (NEST) Group and the MacDiarmid Institute of Advanced Materials and Nanotechnology, University of CanterburyCanterburyNew Zealand
  2. 2.Department of Physics and AstronomyUniversity of CanterburyCanterburyNew Zealand

Personalised recommendations