Advertisement

An investigation of the outer valance orbital electron density distribution of ethylene by electron momentum spectroscopy at 800 eV

  • G. Q. Li
  • J. K. Deng
  • J. D. Huang
  • X. D. Wang
  • Y. Zheng
Molecular Physics and Chemical Physics
  • 55 Downloads

Abstract.

Electron density distributions in momentum space of the outer valence orbitals of ethylene are measured by electron momentum spectroscopy (EMS) in a non-coplanar symmetric geometry. The impact energy was 800 eV plus binding energy (8–22 eV) and energy resolution of the EMS spectrometer was 0.95 eV. The measured experimental momentum distributions of the outer valence orbitals are compared with Hartree-Fock and Density Functional Theory (DFT) calculations. The shapes of the experimental momentum distributions are generally quite well described by both the Hartree-Fock and DFT calculations when large and diffuse basis sets are used, except for 1b3g orbital. The experimental momentum profile of 1b3g orbital clearly show remarkable “turn up” in the low momentum region comparing with theoretical calculation and experimental results at impact energy of 1200 eV.

Keywords

Binding Energy Density Functional Theory Energy Resolution Quantum Computing Impact Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.E. McCarthy, E. Weigold, Rep. Prog. Phys. 91, 789 (1991), and references therein CrossRefGoogle Scholar
  2. I.E. McCarthy, E. Weigold, Electron Momentum Spectronscopy (Klumer Academic/Plenum Publishers, New York, 1999) Google Scholar
  3. C.E. Brion, in The Physics of Electronic and Atomic Collisions, edited by T. Anderson et al. (Amer. Inst. Phys. Press, New York, 1993), p. 350 Google Scholar
  4. C.E. Brion, G. Cooper, Y. Zheng, I.V. Litvinyuk, I.E. McCarthy, Chem. Phys. 270, 13 (2001) CrossRefGoogle Scholar
  5. K.T. Leung, in Theoretical Models of Chemical Bonding, edited by Z.B. Maksic (Springer-Verlag, Berlin, 1991), p. 339 Google Scholar
  6. A.O. Bawagan et al., Chem. Phys. 113, 19 (1987) CrossRefGoogle Scholar
  7. A.J. Dixon et al., Relat. Phenom. 14, 267 (1978) Google Scholar
  8. M.A. Coplan et al., J. Am. Chem. Soc. 100, 5008 (1979) Google Scholar
  9. J.A. Tossell et al., J. Chem. Phys. 71, 4005 (1979) CrossRefGoogle Scholar
  10. R.R. Gorunganthu et al., J. Chem. Phys. 91, 1994 (1989) CrossRefGoogle Scholar
  11. B.P. Hollebone et al., Chem. Phys. 196, 13 (1995) CrossRefGoogle Scholar
  12. P. Duffy et al., Phys. Rev. A. 50, 4707 (1994), and references therein CrossRefPubMedGoogle Scholar
  13. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) Google Scholar
  14. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989). CrossRefGoogle Scholar
  15. A.D. Becke, J. Chem. Phys. 98, 5648 (1996) CrossRefGoogle Scholar
  16. J.K. Deng et al., J Chem. Phys. 114, 882 (2001) CrossRefGoogle Scholar
  17. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of HeI Photoelectron Spectra of Fndamental Organic Molecules (Japan Scientific Society, Tokyo, 1981) Google Scholar
  18. M.S. Banna, D.A. Shirley, J. Electron Spectry. Relat. Phenom. 8, 225 (1976) CrossRefGoogle Scholar
  19. P. Duffy et al., Chem. Phys. 159, 347 (1992) CrossRefGoogle Scholar
  20. C.E. Brion et al., J. Phys. B: At. Mol. Opt. Phys. 31, L223 (1998) Google Scholar
  21. J. Rolke et al. Chem. Phys. 244, 1 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • G. Q. Li
    • 1
  • J. K. Deng
    • 1
  • J. D. Huang
    • 1
  • X. D. Wang
    • 1
  • Y. Zheng
    • 1
  1. 1.Department of PhysicsTsinghua UniversityBeijingP.R. China

Personalised recommendations