Advertisement

The 4-particle hydrogen-antihydrogen system revisited

Twofold molecular Hamiltonian symmetry and natural atom antihydrogen
  • G. Van Hooydonk
Molecular Physics and Chemical Physics

Abstract.

The historical importance of the original quantum mechanical bond theory proposed by Heitler and London in 1927 as well as its pitfalls are reviewed. Modern ab initio treatments of H-\(\bar {\rm H}\) systems are inconsistent with the logic behind algebraic Hamiltonians H± =H 0 ± ΔH for charge-symmetrical and charge-asymmetrical 4 unit charge systems like H2 and H\(\bar {\rm H}\). Their eigenvalues E± =E 0± β are exactly those of 1927 Heitler-London (HL) theory. Since these 2 Hamiltonians are mutually exclusive, only the attractive one can apply for stable natural molecular H2. A wrong choice leads to problems with antiatom \(\bar {\rm H}\). In line with earlier results on band and line spectra, we now prove that HL chose the wrong Hamiltonian for H2. Their theory explains the stability of attractive system H2 with a repulsive Hamiltonian H0 + ΔH instead of with the attractive one H0-ΔH, representative for charge-asymmetrical system H\(\bar {\rm H}\). A new second order symmetry effect is detected in this attractive Hamiltonian, which leads to a 3-dimensional structure for the 4-particle system. Repulsive HL Hamiltonian H+ applies at long range but at the critical distance, attractive charge-inverted Hamiltonian H- takes over and leads to bond H2 but in reality, H\(\bar {\rm H}\), for which we give an analytical proof. This analysis confirms and generalizes an earlier critique of the wrong long range behavior of HL-theory by Bingel, Preuss and Schmidtke and by Herring. Another wrong asymptote choice in the past also applies for atomic antihydrogen \(\bar {\rm H}\), which has hidden the Mexican hat potential for natural hydrogen. This generic solution removes most problems, physicists and chemists experience with atomic \(\bar {\rm H}\) and molecular H\(\bar {\rm H}\), including the problem with antimatter in the Universe.

Keywords

Long Range Antihydrogen Mechanical Bond Charge System Analytical Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Zygelman et al., Phys. Rev. A 69, 042715 (2004); P. Froelich et al., Phys. Rev. A 70, 022509 (2004); P. Froelich et al., Phys. Rev. Lett. 84, 4577 (2000); S. Jonsell et al., Phys. Rev. A 64, 052712 (2001); B. Zygelman et al., Phys. Rev. A 63, 052722 (2001); E.A.G. Armour, V. Zeman, Int. J. Quant. Chem. 74, 645 (1999); E.A.G. Armour, C.W. Chamberlain, J. Phys. B 35, L489 (2002); E.A.G. Armour, J.M. Carr, V. Zeman, J. Phys. B 31, L679 (1998); K. Strasburger, J. Phys. B 35, L435 (2002); P.K. Sinha, P. Chaudhuri, A.S. Ghosh, Phys. Rev. A 69, 014701 (2004); P.K. Sinha, A.S. Ghosh, Europhys. Lett. 49, 558 (2000)Google Scholar
  2. (a) W. Heitler, F. London, Z. Phys. 44, 455 (1927); (b) C. Herring, Rev. Mod. Phys. 43, 631 (1962); (c) W.A. Bingel, H. Preuss, H.H. Schmidtke, Z. Naturforsch. A 16, 434 (1961); (d) Y. Sugiura, Z. Phys. 45, 484 (1927)Google Scholar
  3. W. Kolos, L. Wolniewicz, J. Chem. Phys. 49, 404 (1968)Google Scholar
  4. W. Kolos et al., Phys. Rev. A 11, 1792 (1975); D.L. Morgan, V.W. Hughes, Phys. Rev. D 2, 1389 (1970); B.R. Junker, J.N. Bardsley, Phys. Rev. Lett. 28, 1227 (1972); R.I. Campeanu, T. Beu, Phys. Lett. A 93, 223 (1983)Google Scholar
  5. M. Amoretti et al., Nature 419, 456 (2002); G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002); G. Gabrielse et al., Phys. Rev. Lett. 89, 233401 (2002)CrossRefGoogle Scholar
  6. G. Van Hooydonk, Spectrochim. Acta A 56, 2273 (2000), arXiv:physics/0001059, arXiv:physics/0003005Google Scholar
  7. J.M. Richard, Phys. Rev. A 49, 3573 (1994)Google Scholar
  8. G. Van Hooydonk, submitted, http://halshs.ccsd.cnrs.fr/docs/00/02/80/73/PDF/ VDWaalsHAL.pdf Google Scholar
  9. (a) A.R. Matamala, Int. J. Quant. Chem. 89, 129 (2002); (b) A. Kratzer, Z. Phys. 3, 289 (1920), Ann. Phys. 67, 127 (1922), E. Fues, Ann. Phys. 80, 376 (1926); (c) A. Requena, J. Zuniga, L.M. Fuentes, A. Hidalgo, J. Chem. Phys. 85, 3939 (1986); J.M. Frances, M. Alacid, A. Requena, J. Chem. Phys. 90, 5536 (1989); A. Bastida, J. Zuniga, M. Alacid, A. Requena, A. Hidalgo, J. Chem. Phys. 93, 3408 (1990); A. Requena, M. Alacid, A. Bastida, J. Zuniga, Int. J. Quant. Chem. 52, 165 (1994); M. Bag, M.M. Panja, R. Dutt, Y.P. Varshni, J. Chem. Phys. 95, 1139 (1991); D.R. Herrick, S. O’Connor, J. Chem. Phys. 109, 2071 (1998); R.L. Hall, N. Saad, J. Chem. Phys. 109, 2983 (1998); D. Secrest, J. Chem. Phys. 89, 1017 (1988); D. Secrest, J. Phys. Chem. 95, 1058 (1991); A. Alijah, G. Duxbury, Mol. Phys. 70, 605 (1990); C. Amiot, J. Chem. Phys. 93, 8591 (1990); C. Amiot, J. Mol. Spectr. 147, 370 (1991); B.H. Chang, D. Secrest, J. Chem. Phys. 84, 1196 (1991); S. Brajamani, C.A. Singh, J. Phys. A: Math. Gen. 23, 3421 (1990); J. Makarewicz, J. Phys. B: At. Mol. Opt. Phys. 21, 3633 (1988); R.E. Moss, J.A. Sadler, Mol. Phys. 68, 1015 (1989); M. Molski, J. Konarski, Phys. Rev. A 47, 711 (1993); M. Molski, J. Konarski, Chem. Phys. Lett. 196, 517 (1992); M. Molski, J. Konarski, Acta Phys. Pol. A 81, 495 (1992); M. Molski, J. Konarski, Theor. Chim. Acta 85, 325 (1993); M. Molski, J. Konarski, J. Molec. Struct. 297, 415 (1993); J. Konarski, Bull. Pol. Acad. Sci. Chem. 43, 279 (1995); J. Konarski, J. Molec. Struct. 270, 491 (1992); K. Nakagawa, M. Akiyama, Chem. Phys. Lett. 190, 91 (1992); C.G. Diaz, F.M. Fernandez, E.A. Castro, Chem. Phys. 157, 31 (1991); F.M. Fernandez, E.A. Castro, J. Math. Chem. 12, 1 (1993); I.L. Cooper, Chem. Phys. 121, 343 (1988); I.L. Cooper, Int. J. Quant. Chem. 49, 2 (1994); T. Hayes, D. Bellert, T. Buthelezi, P.J. Brucat, Chem. Phys. Lett. 287, 22 (1998); J.K.G. Watson, J. Chem. Phys. 90, 6443 (1989); J. Morales, J.J. Pena, G. Ovando, V. Gaftoi, J. Math. Chem. 21, 273 (1997); J. Morales, G. Arreaga, J.J. Pena, V. Gaftoi, G. Ovando, J. Math. Chem. 18, 309 (1995); K. Tkacz, W.S. Ptak, Theochem-J. Molec. Struct. 61, 91 (1989); Y. Ergun, H.O. Pamuk, E. Yurtsever, Z. Naturforsch. A 45, 889 (1990)Google Scholar
  10. Y.P. Varshni, Rev. Mod. Phys. 29, 664 (1957)Google Scholar
  11. G. Van Hooydonk, Eur. J. Inorg. Chem., Oct., 1617 (1999) Google Scholar
  12. G. Van Hooydonk, Phys. Rev. A 66, 044103 (2002)Google Scholar
  13. G. Van Hooydonk, Theochem-J. Molec. Struct. 22, 45 (1985)Google Scholar
  14. L. Pauling, E.B. Wilson Jr., Introduction to Quantum Mechanics: with applications to Chemistry (McGraw-Hill, New York, 1935) Google Scholar
  15. G. Van Hooydonk, Z. Naturforsch. A 28, 1836 (1973); Z. Naturforsch. A 29, 971 (1974); Z. Naturforsch. A 31, 828 (1976)Google Scholar
  16. P.A.M. Dirac, Proc. Roy. Soc. London 123, 714 (1929)Google Scholar
  17. E. Brosh, G. Makov, R.Z. Shneck, J. Phys. Condens. Mater 15, 2991 (2003)Google Scholar
  18. H.M. James, A.S. Coolidge, J. Chem. Phys. 1, 825 (1933)Google Scholar
  19. S. Weissman, J.J. Vanderslice, R.J. Battina, J. Chem. Phys. 39, 226 (1963)Google Scholar
  20. G.B.B.M. Sutherland, Proc. Indian Acad. Sci. 8, 341 (1938)Google Scholar
  21. G. Van Hooydonk, Z. Naturforsch. A 37, 710 (1982) Google Scholar
  22. J.L. Dunham, Phys. Rev. 41, 713 (1932)CrossRefMATHGoogle Scholar
  23. A.H. Zewail, J. Phys. Chem. 97, 12427 (1993)Google Scholar
  24. (a) C.A. Coulson, Valence (Oxford University Press, 1959); (b) R.D. Adamson, L.P. Dombroski, P.M.W. Gill, Chem. Phys. Lett. 254, 329 (1996); P.M.W. Gill, R.D. Adamson, J.A. Pople, Mol. Phys. 88, 1005 (1996)Google Scholar
  25. F. Hund, Z. Phys. 43, 805 (1927)Google Scholar
  26. G. Van Hooydonk, Proceedings of the Wigner Centennial, Pecs, 2002, edited by M. Koniorczyk, P. Adam; http://quantum.ttk.pte.hu/∼wigner/proceedings Google Scholar
  27. G. Van Hooydonk, Acta Phys. Hung. NS 19, 385 (2004)Google Scholar
  28. M.I. Eides, H. Grotch, V.A. Shelyuto, Phys. Rep. 342, 63 (2001); arXiv:hep-ph/0002158Google Scholar
  29. W.E. Lamb Jr., R.C. Retherford, Phys. Rev. 79, 549 (1950)Google Scholar
  30. E.A. Hessels, US6163587 A 20001219; B.I. Deutch US4867939 A 19890919 Google Scholar
  31. M.M. Nieto, M.H. Holzscheiter, T.J. Phillips, J. Opt. B 5, S547 (2003); S. Satori, H. Kuninaka, K. Kuriki, J. Prop. Power 12, 918 (1996) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Ghent University, Faculty of SciencesGhentBelgium

Personalised recommendations