Cavity-induced damping and level shifts in a wide aperture spherical resonator

Cavity QED and Trapped Neutral Atoms

Abstract.

We calculate explicitly the space dependence of the radiative relaxation rates and associated level shifts for a dipole placed in the vicinity of the center of a spherical cavity with a large numerical aperture and a relatively low finesse. In particular, we give simple and useful analytic formulas for these quantities, that can be used with arbitrary mirrors transmissions. The vacuum field in the vicinity of the center of the cavity is actually equivalent to the one obtained in a microcavity, and this scheme allows one to predict significant cavity QED effects.

Keywords

Neural Network Complex System Nonlinear Dynamics Relaxation Rate Quantum Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bibliographic note: this paper was written in 1995, and it is presented here in its original form with minor editing. The results were initially presented by Jean-Marc Daul at the conference Quantum Optics in Wavelength Scale Structures, Cargèse, Corsica, August 26-September 2, 1995. The same results were also presented by Philippe Grangier at the Annual Meeting of the TMR Network Microlasers and Cavity QED, Les Houches, France, April 21-25, 1997 Google Scholar
  2. K.H. Drexhage, in Progress in Optics XII, edited by E. Wolf (North-Holland, Amsterdam, 1974) Google Scholar
  3. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981)Google Scholar
  4. P. Goy, J.M. Raymond, M. Gross, S. Haroche, Phys. Rev. Lett. 50, 1903 (1983)Google Scholar
  5. G. Gabrielse, H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985)Google Scholar
  6. R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985)Google Scholar
  7. D.J. Heinzen, J.J. Childs, J.E. Thomas, M.S. Feld, Phys. Rev. Lett. 58, 1320 (1987)Google Scholar
  8. W. Jhe, A. Anderson, E.A. Hinds, D. Meschede, L. Moi, S. Haroche, Phys. Rev. Lett. 58, 666 (1987)CrossRefGoogle Scholar
  9. F. De Martini, G. Innocenti, G.R. Jacobovitz, P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987)Google Scholar
  10. Y. Zhu, A. Lezama, T.W. Mossberg, M. Lewenstein, Phys. Rev. Lett. 61, 1946 (1988)Google Scholar
  11. D.J. Heinzen, M.S. Feld, Phys. Rev. Lett. 59, 2623 (1987)Google Scholar
  12. S.E. Morin, C.C. Yu, T.W. Mossberg, Phys. Rev. Lett. 73, 1489 (1994)Google Scholar
  13. J.-M. Daul, P. Grangier, Eur. Phys. J. D 32, 195 (2005) Google Scholar
  14. S. Haroche, M. Brune, J.M. Raimond, Europhys. Lett. 14, 19 (1991)Google Scholar
  15. B.-G. Englert, J. Schwinger, A.O. Barut, M.O. Scully, Europhys. Lett. 14, 25 (1991)Google Scholar
  16. U. Dorner, P. Zoller, Phys. Rev. A 66, 023816 (2002)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry de l’Institut d’OptiqueOrsay CedexFrance

Personalised recommendations