Spectroscopic studies of NaCs for the ground state asymptote of Na + Cs pairs

  • O. Docenko
  • M. Tamanis
  • R. Ferber
  • A. Pashov
  • H. Knöckel
  • E. Tiemann


The ground state X\(^1\Sigma^ + \) of NaCs was studied by laser induced fluorescence Fourier-transform spectroscopy. An accurate potential energy curve was derived from more than 5000 transitions. This potential reproduces the experimental observations within their uncertainties of \(\pm 0.003 \) cm-1 and covers about 99.97% of the potential well depth. Few vibrational levels of the shallow state a\(^3\Sigma^ + \) below the atomic ground state asymptote were observed. The identification is mainly done by the observed and quantitatively interpreted molecular hyperfine structure applying atomic parameters of the ground states of Na and Cs. An estimated potential curve for a\(^3\Sigma^ + \) is reported which can be used together with that of X\(^1\Sigma^ + \) for coupled channel calculations of cold collisions between Na and Cs. An example is given.


Vibrational Level Potential Energy Curve Supplementary Online Material Potential Curve Atomic Ground State 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM-e2004-00156-5.pdf (150 kb)
ESM-e2004-00156-5 (PDF 150 KB)


  1. 1.
    J.P. Shaffer, W. Chalupczyk, N.P. Bigelow, Phys. Rev. A 60, R3365 (1999)Google Scholar
  2. 2.
    G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati, A. Simoni, Phys. Rev. Lett. 89, 53202 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Z. Hadzibabic, C.A. Stan, K. Dieckmann, S. Gupta, M.W. Zwierlein, A. Görlitz, W. Ketterle, Phys. Rev. Lett. 88, 160401 (2002)CrossRefADSGoogle Scholar
  4. 4.
    S.B. Weiss, M. Bhattacharya, N.P. Bigelow, Phys. Rev. A 68, 042708 (2003)CrossRefADSGoogle Scholar
  5. 5.
    M.A. Baranov, M.S. Mar’enko, Val.S. Rychkov, G.V. Shlyapnikov, Phys. Rev. A 66, 013606 (2002)CrossRefADSGoogle Scholar
  6. 6.
    K. Goral, L. Santos, M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002)CrossRefADSGoogle Scholar
  7. 7.
    A.J. Kerman, J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 92, 033004 (2004)CrossRefADSGoogle Scholar
  8. 8.
    M. Korek, A.R. Allouche, K. Fakhreddine, A. Chaalan, Can. J. Phys. 78, 977 (2000)CrossRefADSGoogle Scholar
  9. 9.
    U. Diemer, H. Weickenmeier, M. Wahl, W. Demtröder, Chem. Phys. Lett. 104, 489 (1984)CrossRefADSGoogle Scholar
  10. 10.
    A. Kopystynska, C. Gabbanini, S. Gozzini, M. Biagini, L. Moi, Phys. Lett. A 159, 266 (1991)CrossRefADSGoogle Scholar
  11. 11.
    O. Allard, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 66, 42503 (2002)CrossRefADSGoogle Scholar
  12. 12.
    O.Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 69, 042503 (2004)CrossRefADSGoogle Scholar
  13. 13.
    F. Engelke, H. Hage, U. Sprick, Chem. Phys. 88, 443 (1984)CrossRefGoogle Scholar
  14. 14.
    C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knöckel, E. Tiemann, Phys. Rev. A 63, 012710 (2000)CrossRefADSGoogle Scholar
  15. 15.
    S.G. Porsev, A. Derevianko, J. Chem. Phys. 119, 844 (2003)CrossRefADSGoogle Scholar
  16. 16.
    A. Derevianko, J.F. Babb, A. Dalgarno, Phys. Rev. A 63, 052704 (2001)CrossRefADSGoogle Scholar
  17. 17.
    H. Knöckel, B. Bodermann, E. Tiemann, Eur. Phys. J. D 28, 199 (2004)CrossRefADSGoogle Scholar
  18. 18.
    X. Wang, J. Magnes, A.M. Lyyra, A.J. Ross, F. Martin, P.M. Dove, R.J. Le Roy, J. Chem. Phys. 117, 9339 (2003)CrossRefADSGoogle Scholar
  19. 19.
    E. Arimondo, M. Inguscio, P. Violini, Rev. Mod. Phys. 49, 31 (1977)CrossRefADSGoogle Scholar
  20. 20.
    T. Laue, P. Pellegrini, O. Dulieu, C. Samuelis, H. Knöckel, F. Masnou-Seeuws, E. Tiemann, Eur. Phys. J. D 26, 173 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • O. Docenko
    • 1
  • M. Tamanis
    • 1
  • R. Ferber
    • 1
  • A. Pashov
    • 2
  • H. Knöckel
    • 3
  • E. Tiemann
    • 3
  1. 1.Department of Physics and Institute of Atomic Physics and SpectroscopyUniversity of LatviaRigaLatvia
  2. 2.Institute for Scientific Research in TelecommunicationsSofiaBulgaria
  3. 3.Institut für QuantenoptikUniversität HannoverHannoverGermany

Personalised recommendations