Instabilities and the roton spectrum of a quasi-1D Bose-Einstein condensed gas with dipole-dipole interactions

Article

Abstract.

We point out the possibility of having a roton-type excitation spectrum in a quasi-1D Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar interaction using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped configuration can be achieved whose spectrum contains a ‘roton’ minimum analogous to that found in helium II. Dipolar gases also offer the exciting prospect of tuning the depth of this ‘roton’ minimum by directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis the system is once again unstable, possibly to the formation of a density wave.

Keywords

Neural Network Helium Nonlinear Dynamics Excitation Spectrum Quantum Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yi, L. You, Phys. Rev. A 61, 041604 (2000); Phys. Rev. A 63, 053607 (2001); Phys. Rev. A 66, 013607 (2002); Phys. Rev. A 67, 045601 (2003)CrossRefGoogle Scholar
  2. 2.
    K. Góral, K. Rzażewski, T. Pfau, Phys. Rev. A 61, 051601 (2000); J.-P. Martikainen, M. Mackie, K.-A. Suominen, Phys. Rev. A 64, 037601 (2001); K. Góral, L. Santos, Phys. Rev. A 66, 023613 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Santos, G.V. Shlyapnikov, P. Zoller, M. Lewenstein, Phys. Rev. Lett. 85, 1791 (2000)CrossRefGoogle Scholar
  4. 4.
    P.M. Lushnikov, Phys. Rev. A 66, 051601(R) (2002)CrossRefGoogle Scholar
  5. 5.
    S. Giovanazzi, A. Görlitz, T. Pfau, Phys. Rev. Lett. 89, 130401 (2002); J. Opt. B 5, S208 (2003)CrossRefGoogle Scholar
  6. 6.
    A. Derevianko, Phys. Rev. A 67, 033607 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Yi, L. You, Phys. Rev. Lett. 92, 193201 (2004)CrossRefGoogle Scholar
  8. 8.
    A.V. Avdeenkov, D.C.E. Bortolotti, J.L. Bohn, Phys. Rev. A 69, 012710 (2004)CrossRefGoogle Scholar
  9. 9.
    M.A. Baranov, L. Dobrek, M. Lewenstein, Phys. Rev. Lett. 92, 250403 (2004)CrossRefGoogle Scholar
  10. 10.
    D.H.J. O’Dell, S. Giovanazzi, C. Eberlein, Phys. Rev. Lett. 92, 250401 (2004); C. Eberlein, S. Giovanazzi, D.H.J. O’Dell, preprint arXiv:cond-mat/0311100CrossRefGoogle Scholar
  11. 11.
    M. Greiner, C.A. Regal, D.S. Jin, Nature 426, 537 (2003); S. Jochim et al. , Science 302, 2101 (2003); M.W. Zwierlein et al. , Phys. Rev. Lett. 91, 250401 (2003)CrossRefGoogle Scholar
  12. 12.
    D.H.J. O’Dell, S. Giovanazzi, G. Kurizki, Phys. Rev. Lett. 90, 110402 (2003)CrossRefGoogle Scholar
  13. 13.
    L. Santos, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 90, 250403 (2003)CrossRefGoogle Scholar
  14. 14.
    D. Pines, P. Noziéres, The Theory of Quantum Liquids (Benjamin, New York, 1966)Google Scholar
  15. 15.
    T. Schneider, C.P. Enz, Phys. Rev. Lett. 27, 1186 (1971)CrossRefGoogle Scholar
  16. 16.
    L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 39, 423 (1984)Google Scholar
  17. 17.
    P. Noziéres, Is the roton in superfluid 4He the ghost of a Bragg spot?, lecture given at the University of Toronto, June 2004Google Scholar
  18. 18.
    D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic Press, London, 1984)Google Scholar
  19. 19.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Butterworth-Heinemann, Oxford, 1998)Google Scholar
  20. 20.
    S. Giovanazzi, D. O’Dell, G. Kurizki, Phys. Rev. Lett. 88, 130402 (2002)CrossRefGoogle Scholar
  21. 21.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, 1964)Google Scholar
  22. 22.
    C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997); C.A. Sackett, C.C. Bradley, M. Welling, R.G. Hulet, Appl. Phys. B 65, 433 (1997)CrossRefGoogle Scholar
  23. 23.
    S. Inouye et al. , Nature 392, 151 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.School of Physics & AstronomyUniversity of St AndrewsNorth Haugh, St AndrewsScotland
  2. 2.Dept of Physics & AstronomyUniversity of SussexFalmer, BrightonEngland

Personalised recommendations