Composite pulses for quantum computation with trapped electrons

Novel Schemes for Quantum Information Processing

Abstract.

In a scalable quantum computer, based on trapped electrons in vacuum, qubits are encoded in the external (cyclotron motion) and internal (spin) degrees of freedom. We show how to extend the technique of composite pulses to manipulate the cyclotron oscillator without leaving the computational subspace. In particular, we describe and discuss how to implement the explicit pulse sequence which operates the conditional phase shift between the cyclotron and the spin qubits.

Keywords

Spectroscopy Neural Network State Physics Complex System Phase Shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995) ADSGoogle Scholar
  2. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995)CrossRefMATHMathSciNetADSGoogle Scholar
  3. B. DeMarco, A. Ben-Kish, D. Leibfried, V. Meyer, M. Rowe, B.M. Jelenkovic, W.M. Itano, J. Britton, C. Langer, T. Rosenband, D.J. Wineland, Phys. Rev. Lett. 89, 267901 (2002)CrossRefADSGoogle Scholar
  4. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland, Nature 422, 412 (2003)CrossRefADSGoogle Scholar
  5. S. Gulde, M. Riebe, G.P.T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I.L. Chuang, R. Blatt, Nature 421, 48 (2003) CrossRefADSGoogle Scholar
  6. For a review see the Quantum Computation Roadmap at the internet site http://qist.lanl.gov Google Scholar
  7. F.M. Penning, Physica 3, 873 (1936)CrossRefGoogle Scholar
  8. S. Peil, G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999)CrossRefADSGoogle Scholar
  9. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSGoogle Scholar
  10. B. D’Urso, B. Odom, G. Gabrielse, Phys. Rev. Lett. 90, 043001 (2003)ADSGoogle Scholar
  11. R.S. Van Dyck Jr, P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987)CrossRefADSGoogle Scholar
  12. T. Beier, H. Häffner, N. Hermanspahn, S.G. Karshenboim, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 88, 011603 (2002) CrossRefADSGoogle Scholar
  13. S. Mancini, A.M. Martins, P. Tombesi, Phys. Rev. A 61, 012303 (2000)CrossRefADSGoogle Scholar
  14. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 63, 052307 (2001)CrossRefADSGoogle Scholar
  15. G. Ciaramicoli, I. Marzoli, P. Tombesi, J. Mod Opt. 49, 1307 (2002)MATHMathSciNetADSGoogle Scholar
  16. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. Lett. 91, 017901 (2003)CrossRefADSGoogle Scholar
  17. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 70, 032301 (2004) CrossRefADSGoogle Scholar
  18. S. Stahl, F. Galve, J. Alonso, S. Djekic, W. Quint, T. Valenzuela, J. Verdú, M. Vogel, G. Werth, Eur. Phys. J. D (submitted, 2004) Google Scholar
  19. A.M. Childs, I.L. Chuang, Phys. Rev. A 63, 012306 (2001)CrossRefADSGoogle Scholar
  20. M.H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986)ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2004

Authors and Affiliations

  1. 1.Dipartimento di Fisica and INFM, Università degli Studi di CamerinoCamerinoItaly

Personalised recommendations