Dynamics of a lasing atom in hot plasma

Article
  • 41 Downloads

Abstract.

We study theoretically the dynamics of lasing atoms in a very hot plasma capillary, which produce coherent X-ray radiation. The atoms which participate in the lasing action are treated as a dilute gas, embedded in the plasma, whose electrons play the dominant role in inducing relaxations and decoherences. The active atom interacting with the electron reservoir in thermal equilibrium is described by a general Hamiltonian. In analogy with a radiation reservoir, by eliminating the degrees of freedom of the electron reservoir, the evolution rates of the Master Equation, i.e. the transition rates for the populations and dephasing rates for coherences, are calculated. It is demonstrated, by going beyond the dipole approximation, that the contribution of the adiabatic dephasing rate is significant compared to that of the non-adiabatic rate, in contrast to the case of a radiation reservoir. We also study other dephasing mechanisms, e.g. the motion of the lasing atom’s center of mass, and the role of other atomic levels.

Keywords

Radiation Coherence Evolution Rate Transition Rate Dominant Role 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baranger, Spectral Line Broadening in Plasmas (Academic Press, Inc., 1962), pp. 493-548Google Scholar
  2. 2.
    A. Ben-Kish, M. Shuker, A. Nemirovsky, R.A. Fisher, A. Ron, J.L. Schwob, Phys. Rev. Lett. 87, 015002 (2001)CrossRefGoogle Scholar
  3. 3.
    P.R. Berman, W.E. Lamb Jr, Phys. Rev. A 2, 2435 (1970)CrossRefGoogle Scholar
  4. 4.
    V. Bommier, S. Sahal-Bréchot, Ann. Phys. Fr. 16, 555 (1991)Google Scholar
  5. 5.
    C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (Wiley-Interscience, 1977)Google Scholar
  6. 6.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (John Wiley & Sons, 1998)Google Scholar
  7. 7.
    R.C. Elton, X-Ray Lasers (Academic Press Inc., 1990)Google Scholar
  8. 8.
    H. Goldstein, Classical Mechanics (Addison-Wesley, 1980)Google Scholar
  9. 9.
    H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, 1974)Google Scholar
  10. 10.
    G.M. Haines, S.V. Lebedev, J.P. Chittenden, Phys. Plasma 7, 1672 (2000)CrossRefGoogle Scholar
  11. 11.
    W.E. Lamb, Phys. Rev. 134, A1429 (1964)Google Scholar
  12. 12.
    O. Larroche, D. Ros, A. Klisnick, A. Sureau, C. Möller, H. Guennou, Phys. Rev. A 62, 043815-1 (2000)CrossRefGoogle Scholar
  13. 13.
    E.L. Lewis, Phys. Rep. 58, 1 (1979)CrossRefGoogle Scholar
  14. 14.
    D. Marcuse, Principles of Quantum Electronics (Academic Press, Inc., 1980)Google Scholar
  15. 15.
    N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Oxford University Press, 1950)Google Scholar
  16. 16.
    R.A. Nemirovsky, A. Ben-Kish, M. Shuker, A. Ron, Phys. Rev. Lett. 82, 3436 (1999)CrossRefGoogle Scholar
  17. 17.
    G. Niimi, Y. Hayashi, M. Nakajima, M. Watanabe, A. Okino, K. Horioka, E. Hotta, J. Phys. D: Appl. Phys. 34, 2123 (2001)CrossRefGoogle Scholar
  18. 18.
    J.J. Rocca, V. Shlyaptsev, F.G. Tomasev, O.D. Cortazar, D. Hartshorn, J.L.A. Chilla, Phys. Rev. Lett. 73, 2192 (1994)CrossRefGoogle Scholar
  19. 19.
    I.I. Sobel’man, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, 1995)Google Scholar
  20. 20.
    G. Tomassetti, A. Ritucci, A. Reale. Eur. Phys. J. D 19, 73 (2002)CrossRefGoogle Scholar
  21. 21.
    H. Van Regemorter, Astrophys. J. 136, 906 (1962)CrossRefGoogle Scholar
  22. 22.
    A.V. Vinogradov, I.I. Sobel’man, Sov. Phys. JEPT 36, 1115 (1973)Google Scholar
  23. 23.
    A. Yariv, Quantum Electronics (John Wiley & Sons, 1967)Google Scholar
  24. 24.
    A.N. Zerikhin, Sov. J. Quant. Elec. 6, 82 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations