Advertisement

Evolution of photoelectron angular distributions in a train of identical, circularly polarized few-cycle laser pulses

  • J. T. Zhang
  • S. H. Li
  • Z. Z. Xu
Article
  • 50 Downloads

Abstract.

Photoelectron angular distribution (PAD) of atoms irradiated by a train of identical, circularly polarized few-cycle laser pulses is studied in the frame of a nonperturbative scattering theory. Our study shows that the PADs vary with the kinetic energy of photoelectron, the carrier-envelope phase, and the pulse duration. We find that along with increasing of the kinetic energy of photoelectron or with decreasing of the pulse duration or the both, the original one maximum of PAD splits into two maxima; the newly produced two maxima evolve to the opposite pole of the symmetric axis, and finally incorporate as a new maximum located in the symmetric axis.

Keywords

Kinetic Energy Laser Pulse Pulse Duration Angular Distribution Opposite Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nisoli, S. De Silvestri, O. Svelto, R. Szipcs, K. Ferencz, Ch. Spielmann, S. Satrania, F. Krausz, Opt. Lett. 22, 522 (1997)Google Scholar
  2. 2.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Baltuska et al. , Nature 421, 611 (2003)CrossRefGoogle Scholar
  4. 4.
    G.G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S. De Silvestri, Nature 414, 182 (2001); D.B. Milosevic, G.G. Paulus, W. Becker, Phys. Rev. Lett. 89, 153001 (2002)CrossRefGoogle Scholar
  5. 5.
    H.M. Nilsen, L.B. Madsen, J.P. Hansen, Phys. Rev. A 66, 025402 (2002); J.P. Hansen, J. Lu, L.B. Madsen, H.M. Nilsen, Phys. Rev. A 64, 033418 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Bashkansky, P.H. Bucksbaum, D.W. Schumacker, Phys. Rev. Lett. 60, 2458 (1988); Phys. Rev. Lett. 59, 274 (1987); P. Krstic, M.H. Mittleman, Phys. Rev. A 44, 5938 (1991)Google Scholar
  7. 7.
    P. Dietrich, F. Krausz, P.B. Corkum, Opt. Lett. 25, 16 (2000)Google Scholar
  8. 8.
    J. Zhang, Z. Xu, Phys. Rev. A 68, 013402 (2003)CrossRefGoogle Scholar
  9. 9.
    D.-S. Guo, T. Aberg, B. Crasemann, Phys. Rev. A 40, 4997 (1989)CrossRefGoogle Scholar
  10. 10.
    D.-S. Guo, T. Aberg, J. Phys. A 21, 4577 (1988)CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)CrossRefGoogle Scholar
  12. 12.
    D.-S. Guo, G.W. Drake, J. Phys. A 25, 5377 (1992)CrossRefGoogle Scholar
  13. 13.
    B. Yang, K.J. Schafer, B. Walker, K.C. Kulander, P. Agostini, L.F. Dimauro, Phys. Rev. Lett. 71, 3770 (1993)Google Scholar
  14. 14.
    M.J. Nandor, M.A. Walker, L.D. van Woerkom, J. Phys. B 31, 4617 (1998)CrossRefGoogle Scholar
  15. 15.
    V. Schyja, T. Lang, H. Helm, Phys. Rev. A 57, 3692 (1998)CrossRefGoogle Scholar
  16. 16.
    G.D. Gillen, L.D. van Woerkom, Phys. Rev. A 68, 033401 (2003)CrossRefGoogle Scholar
  17. 17.
    R. Wiehle, B. Witzel, H. Helm, E. Comiern, Phys. Rev. A 67, 063405 (2003)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, W. Zhang, Z. Xu, X. Li, P. Fu, D.-S. Guo, R.R. Freeman, J. Phys. B 35, 4809 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.CCAST (World Laboratary)BeijingP.R. China
  2. 2.Laboratory for High Intensity OpticsShanghai Institute of Optical and Fine Mechanics, Chinese Academy of SciencesShanghaiP.R. China
  3. 3.Department of PhysicsShantou UniversityShantouP.R. China

Personalised recommendations