Skip to main content
Log in

Abstract.

The connection between the quantum-vacuum geometric phases (which originates from the vacuum zero-point electromagnetic fluctuation) and the non-normal order for operator product is considered in the present paper. In order to investigate this physically interesting geometric phases at quantum-vacuum level, we suggest an experimentally feasible scheme to test it by means of a noncoplanarly curved fiber made of gyrotropic media. A remarkable feature of the present experimental realization is that one can easily extract the nonvanishing and nontrivial quantum-vacuum geometric phases of left- and/or right-handed circularly polarized light from the vanishing and trivial total quantum-vacuum geometric phases. Since the normal-order procedure may remove globally the vacuum energy of time-dependent quantum systems, the potential physical vacuum effects (e.g., quantum-vacuum geometric phases) may also be removed by this procedure. Thus the detection of the geometric phases at quantum-vacuum level may answer whether the normal-order technique is valid or not in the time-dependent quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984)

    MathSciNet  Google Scholar 

  2. B. Simon, Phys. Rev. Lett. 51, 2167 (1983)

    Article  MathSciNet  Google Scholar 

  3. C. Furtado, V.B. Bezerra, Phys. Rev. D 62, 045003 (2000)

    Article  Google Scholar 

  4. Y.S. Wu, A. Kuppermann, Chem. Phys. Lett. 201, 178 (1993); Y.S. Wu, A. Kuppermann, Chem. Phys. Lett. 186, 319 (1991)

    Article  Google Scholar 

  5. B.G. Levi, Phys. Today (March), 17 (1993)

  6. A.G. Wagh et al. , Phys. Lett. A 268, 209 (2000)

    Article  Google Scholar 

  7. L.F. Gong, Q. Li, Y.L. Chen, Phys. Lett. A 251, 387 (1999); J.Q. Shen, H.Y. Zhu, P. Chen, Eur. Phys. J. D 23, 305 (2003)

    Article  Google Scholar 

  8. G. Falci et al. , Nature 407, 355 (2000); J.Q. Shen, S.L. He, Phys. Rev. B 68, 195421 (2003)

    Article  Google Scholar 

  9. J.Q. Shen, S.S. Xiao, Q. Wu, Chin. Opt. Lett. 1, 183 (2003)

    Google Scholar 

  10. J.A. Jones, Nature 403, 869 (2000)

    Article  Google Scholar 

  11. X.B. Wang, M. Keiji, Phys. Rev. Lett. 87, 097901 (2001)

    Article  Google Scholar 

  12. S.L. Zhu, Z.D. Wang, Phys. Rev. Lett. 89, 097902 (2002)

    Article  Google Scholar 

  13. R.Y. Chiao, Y.S. Wu, Phys. Rev. Lett. 57, 933 (1986)

    Article  Google Scholar 

  14. A. Tomita, R.Y. Chiao, Phys. Rev. Lett. 57, 937 (1986)

    Article  Google Scholar 

  15. P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 66, 588 (1991)

    Article  Google Scholar 

  16. A.L. Robinson, Science 234, 424 (1986)

    Google Scholar 

  17. F.D.M. Haldane, Opt. Lett. 11, 730 (1986)

    Google Scholar 

  18. F.D.M. Haldane, Phys. Rev. Lett. 15, 1788 (1987)

    Article  Google Scholar 

  19. J.Q. Shen, H.Y. Zhu, Ann. Phys. (Leipzig) 12, 131 (2003)

    Article  MATH  Google Scholar 

  20. X.C. Gao, Chin. Phys. Lett. 19, 613 (2002)

    Article  Google Scholar 

  21. H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969)

    Article  Google Scholar 

  22. X.C. Gao, J.B. Xu, T.Z. Qian, Phys. Rev. A 44, 7016 (1991)

    Article  MathSciNet  Google Scholar 

  23. J.Q. Shen, L.H. Ma, Phys. Lett. A 308, 355 (2003)

    Article  MATH  Google Scholar 

  24. I. Fuentes-Guridi, A. Carollo, S. Bose, V. Vedral, Phys. Rev. Lett. 89, 220404 (2002)

    Article  Google Scholar 

  25. J.Q. Shen, e-print arXiv:quant-ph/0304172 (2003)

  26. A.K. Pati, Phys. Rev. A 52, 2576 (1995)

    Article  MathSciNet  Google Scholar 

  27. N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (Mc Graw-Hill Company, New York, 1965), Chap. 14

  29. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  30. W. Jhe, A. Anderson, E.A. Hinds, D. Meshede, L. Moi, S. Haroche, Phys. Rev. Lett. 58, 666 (1987)

    Article  Google Scholar 

  31. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Google Scholar 

  32. J.Q. Shen, Ann. Phys. (Leipzig) 13, 335 (2004)

    Article  MATH  Google Scholar 

  33. V.V. Klimov, Opt. Comm. 211, 183 (2002)

    Article  Google Scholar 

  34. H.T. Dung, S.Y. Buhmann, L. Knöll, D.-G. Welsch, Phys. Rev. A 68, 043816 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Shen.

Additional information

Received: 4 February 2004, Published online: 29 June 2004

PACS:

03.65.Vf Phases: geometric; dynamic or topological - 03.70. + k Theory of quantized fields - 42.70.-a Optical materials - 42.50.Xa Optical tests of quantum theory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J.Q. Quantum-vacuum geometric phases in the noncoplanarly curved fiber system. Eur. Phys. J. D 30, 259–264 (2004). https://doi.org/10.1140/epjd/e2004-00082-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00082-6

Keywords

Navigation