Advertisement

Quantum-vacuum geometric phases in the noncoplanarly curved fiber system

Article

Abstract.

The connection between the quantum-vacuum geometric phases (which originates from the vacuum zero-point electromagnetic fluctuation) and the non-normal order for operator product is considered in the present paper. In order to investigate this physically interesting geometric phases at quantum-vacuum level, we suggest an experimentally feasible scheme to test it by means of a noncoplanarly curved fiber made of gyrotropic media. A remarkable feature of the present experimental realization is that one can easily extract the nonvanishing and nontrivial quantum-vacuum geometric phases of left- and/or right-handed circularly polarized light from the vanishing and trivial total quantum-vacuum geometric phases. Since the normal-order procedure may remove globally the vacuum energy of time-dependent quantum systems, the potential physical vacuum effects (e.g., quantum-vacuum geometric phases) may also be removed by this procedure. Thus the detection of the geometric phases at quantum-vacuum level may answer whether the normal-order technique is valid or not in the time-dependent quantum field theory.

Keywords

Field Theory Quantum Field Theory Quantum System Operator Product Experimental Realization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984)MathSciNetGoogle Scholar
  2. 2.
    B. Simon, Phys. Rev. Lett. 51, 2167 (1983)CrossRefMathSciNetGoogle Scholar
  3. 3.
    C. Furtado, V.B. Bezerra, Phys. Rev. D 62, 045003 (2000)CrossRefGoogle Scholar
  4. 4.
    Y.S. Wu, A. Kuppermann, Chem. Phys. Lett. 201, 178 (1993); Y.S. Wu, A. Kuppermann, Chem. Phys. Lett. 186, 319 (1991)CrossRefGoogle Scholar
  5. 5.
    B.G. Levi, Phys. Today (March), 17 (1993)Google Scholar
  6. 6.
    A.G. Wagh et al. , Phys. Lett. A 268, 209 (2000)CrossRefGoogle Scholar
  7. 7.
    L.F. Gong, Q. Li, Y.L. Chen, Phys. Lett. A 251, 387 (1999); J.Q. Shen, H.Y. Zhu, P. Chen, Eur. Phys. J. D 23, 305 (2003)CrossRefGoogle Scholar
  8. 8.
    G. Falci et al. , Nature 407, 355 (2000); J.Q. Shen, S.L. He, Phys. Rev. B 68, 195421 (2003)CrossRefGoogle Scholar
  9. 9.
    J.Q. Shen, S.S. Xiao, Q. Wu, Chin. Opt. Lett. 1, 183 (2003)Google Scholar
  10. 10.
    J.A. Jones, Nature 403, 869 (2000)CrossRefGoogle Scholar
  11. 11.
    X.B. Wang, M. Keiji, Phys. Rev. Lett. 87, 097901 (2001)CrossRefGoogle Scholar
  12. 12.
    S.L. Zhu, Z.D. Wang, Phys. Rev. Lett. 89, 097902 (2002)CrossRefGoogle Scholar
  13. 13.
    R.Y. Chiao, Y.S. Wu, Phys. Rev. Lett. 57, 933 (1986)CrossRefGoogle Scholar
  14. 14.
    A. Tomita, R.Y. Chiao, Phys. Rev. Lett. 57, 937 (1986)CrossRefGoogle Scholar
  15. 15.
    P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 66, 588 (1991)CrossRefGoogle Scholar
  16. 16.
    A.L. Robinson, Science 234, 424 (1986)Google Scholar
  17. 17.
    F.D.M. Haldane, Opt. Lett. 11, 730 (1986)Google Scholar
  18. 18.
    F.D.M. Haldane, Phys. Rev. Lett. 15, 1788 (1987)CrossRefGoogle Scholar
  19. 19.
    J.Q. Shen, H.Y. Zhu, Ann. Phys. (Leipzig) 12, 131 (2003)CrossRefMATHGoogle Scholar
  20. 20.
    X.C. Gao, Chin. Phys. Lett. 19, 613 (2002)CrossRefGoogle Scholar
  21. 21.
    H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969)CrossRefGoogle Scholar
  22. 22.
    X.C. Gao, J.B. Xu, T.Z. Qian, Phys. Rev. A 44, 7016 (1991)CrossRefMathSciNetGoogle Scholar
  23. 23.
    J.Q. Shen, L.H. Ma, Phys. Lett. A 308, 355 (2003)CrossRefMATHGoogle Scholar
  24. 24.
    I. Fuentes-Guridi, A. Carollo, S. Bose, V. Vedral, Phys. Rev. Lett. 89, 220404 (2002)CrossRefGoogle Scholar
  25. 25.
    J.Q. Shen, e-print arXiv:quant-ph/0304172 (2003)Google Scholar
  26. 26.
    A.K. Pati, Phys. Rev. A 52, 2576 (1995)CrossRefMathSciNetGoogle Scholar
  27. 27.
    N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (Mc Graw-Hill Company, New York, 1965), Chap. 14Google Scholar
  29. 29.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  30. 30.
    W. Jhe, A. Anderson, E.A. Hinds, D. Meshede, L. Moi, S. Haroche, Phys. Rev. Lett. 58, 666 (1987)CrossRefGoogle Scholar
  31. 31.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)Google Scholar
  32. 32.
    J.Q. Shen, Ann. Phys. (Leipzig) 13, 335 (2004)CrossRefMATHGoogle Scholar
  33. 33.
    V.V. Klimov, Opt. Comm. 211, 183 (2002)CrossRefGoogle Scholar
  34. 34.
    H.T. Dung, S.Y. Buhmann, L. Knöll, D.-G. Welsch, Phys. Rev. A 68, 043816 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Centre for Optical and Electromagnetic ResearchJoint Research Centre of Photonics of The Royal Institute of TechnologySweden
  2. 2.Zhejiang UniversityHangzhou YuquanP.R. China
  3. 3.Zhejiang Institute of Modern Physics and Department of PhysicsZhejiang UniversityHangzhouP.R. China

Personalised recommendations