Skip to main content
Log in

Global minima for free \(\mathsf{Pt_{N}}\) clusters (\(\mathsf{N = 22{-}56}\)): a comparison between the searches with a molecular dynamics approach and a basin-hopping algorithm

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Using molecular dynamics and thermal quenching simulation techniques, and the basin-hopping Monte Carlo algorithm we have studied the global minima and energetics of free Pt N clusters in the size range of N = 22-56. The clusters have been described by the Voter and Chen version of an embedded-atom model, which is derived by fitting to experimental data of both the diatomic molecule and bulk platinum simultaneously. A comparison between the two search techniques has been performed and it is found that the basin-hopping algorithm is more efficient than a molecular dynamics minimization approach in the investigation of the global minima. The results show that the global minima of the Pt clusters have structures based on either octahedral, decahedral or icosahedral packing. Some of the icosahedral global minima do not have a central atom. The 54-atom icosahedron without a central atom is found to be more stable than the 55-atom complete icosahedron. The resulting structures have been compared with the previous theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sebetci, Z.B. Güvenç, Surf. Sci. 525, 66 (2003); and references therein

    Article  Google Scholar 

  2. D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997)

    Article  Google Scholar 

  3. Z. Li, H.A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611 (1987)

    Google Scholar 

  4. M. Karabacak, S. Özçelik, Z.B. Güvenç, Surf. Sci. 532-535, 306 (2003)

    Google Scholar 

  5. S. Özçelik, Z.B. Güvenç, Surf. Sci. 532-535, 312 (2003)

    Google Scholar 

  6. R.H. Leary, J. Glob. Opt. 18, 367 (2000)

    Article  MATH  Google Scholar 

  7. J.P.K. Doye, D.J. Wales, New J. Chem., 733 (1998)

  8. C. Massen, T.V. Mortimer-Jones, R.L. Johnston, J. Chem. Soc., Dalton Trans. 23, 4375 (2002)

    Google Scholar 

  9. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  Google Scholar 

  10. J.P.K. Doye, M.A. Miller, D.J. Wales, J. Chem. Phys. 111, 8417 (1999)

    Article  Google Scholar 

  11. R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995)

    MathSciNet  MATH  Google Scholar 

  12. http://www-wales.ch.cam.ac.uk/software.html

  13. J.P.K. Doye, D.J. Wales, R.S. Berry, J. Chem. Phys. 103, 4234 (1995)

    Article  Google Scholar 

  14. J.P.K. Doye, D.J. Wales, J. Chem. Soc., Faraday Trans. 93, 4233 (1997)

    Article  Google Scholar 

  15. J.A. Northby, J. Xie, D.L. Freeman, J.D. Doll, Z. Phys. D 12, 69 (1989)

    Google Scholar 

  16. J.W. Lee, G.D. Stein, J. Phys. Chem. 91, 2450 (1987)

    Google Scholar 

  17. K. Clemenger, Phys. Rev. B 32, 1359 (1985)

    Article  Google Scholar 

  18. Y.J. Lee, E.K. Lee, S. Kim, Pyhs. Rev. Lett. 86, 999 (2001)

    Article  Google Scholar 

  19. A.L. Mackay, Acta Crystallogr. 15, 916 (1962)

    Article  Google Scholar 

  20. N.T. Wilson, R.L. Johnston, Eur. Phys. J. D 12, 161 (2000)

    Article  Google Scholar 

  21. J. Uppenbrink, D.J. Wales, J. Chem. Phys. 96, 8520 (1992)

    Article  Google Scholar 

  22. M. Andersson, A. Rosen, J. Chem. Phys. 117, 7051 (2002)

    Article  Google Scholar 

  23. E.K. Parks, L. Zhu, J. Ho, S.J. Riley, J. Chem. Phys. 100, 7206 (1994)

    Article  Google Scholar 

  24. E.K. Parks, G.C. Nieman, K.P. Kerns, S.J. Riley, J. Chem. Phys. 108, 3731 (1998)

    Article  Google Scholar 

  25. E.K. Parks, S.J. Riley, Z. Phys. D 33, 59 (1995)

    Google Scholar 

  26. E.K. Parks, B.J. Winter, T.D. Klots, S.J. Riley, J. Chem. Phys. 94, 1882 (1991)

    Article  Google Scholar 

  27. R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002)

  28. N.T. Wilson, R.L. Johnston, Phys. Chem. Chem. Phys. 4, 4168 (2002)

    Article  Google Scholar 

  29. http://brian.ch.cam.ac.uk/CCD.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sebetci.

Additional information

Received: 30 March 2004, Published online: 18 May 2004

PACS:

36.40.-c Atomic and molecular clusters - 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebetci, A., Güvenç, Z.B. Global minima for free \(\mathsf{Pt_{N}}\) clusters (\(\mathsf{N = 22{-}56}\)): a comparison between the searches with a molecular dynamics approach and a basin-hopping algorithm. Eur. Phys. J. D 30, 71–79 (2004). https://doi.org/10.1140/epjd/e2004-00072-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00072-8

Keywords

Navigation