Advertisement

Global minima for free \(\mathsf{Pt_{N}}\) clusters (\(\mathsf{N = 22{-}56}\)): a comparison between the searches with a molecular dynamics approach and a basin-hopping algorithm

  • A. Sebetci
  • Z. B. Güvenç
Article

Abstract.

Using molecular dynamics and thermal quenching simulation techniques, and the basin-hopping Monte Carlo algorithm we have studied the global minima and energetics of free Pt N clusters in the size range of N = 22-56. The clusters have been described by the Voter and Chen version of an embedded-atom model, which is derived by fitting to experimental data of both the diatomic molecule and bulk platinum simultaneously. A comparison between the two search techniques has been performed and it is found that the basin-hopping algorithm is more efficient than a molecular dynamics minimization approach in the investigation of the global minima. The results show that the global minima of the Pt clusters have structures based on either octahedral, decahedral or icosahedral packing. Some of the icosahedral global minima do not have a central atom. The 54-atom icosahedron without a central atom is found to be more stable than the 55-atom complete icosahedron. The resulting structures have been compared with the previous theoretical calculations.

Keywords

Platinum Molecular Dynamic Theoretical Calculation Global Minimum Simulation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sebetci, Z.B. Güvenç, Surf. Sci. 525, 66 (2003); and references thereinCrossRefGoogle Scholar
  2. 2.
    D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997)CrossRefGoogle Scholar
  3. 3.
    Z. Li, H.A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611 (1987)Google Scholar
  4. 4.
    M. Karabacak, S. Özçelik, Z.B. Güvenç, Surf. Sci. 532-535, 306 (2003)Google Scholar
  5. 5.
    S. Özçelik, Z.B. Güvenç, Surf. Sci. 532-535, 312 (2003)Google Scholar
  6. 6.
    R.H. Leary, J. Glob. Opt. 18, 367 (2000)CrossRefMATHGoogle Scholar
  7. 7.
    J.P.K. Doye, D.J. Wales, New J. Chem., 733 (1998)Google Scholar
  8. 8.
    C. Massen, T.V. Mortimer-Jones, R.L. Johnston, J. Chem. Soc., Dalton Trans. 23, 4375 (2002)Google Scholar
  9. 9.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)CrossRefGoogle Scholar
  10. 10.
    J.P.K. Doye, M.A. Miller, D.J. Wales, J. Chem. Phys. 111, 8417 (1999)CrossRefGoogle Scholar
  11. 11.
    R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995)MathSciNetMATHGoogle Scholar
  12. 12.
    http://www-wales.ch.cam.ac.uk/software.htmlGoogle Scholar
  13. 13.
    J.P.K. Doye, D.J. Wales, R.S. Berry, J. Chem. Phys. 103, 4234 (1995)CrossRefGoogle Scholar
  14. 14.
    J.P.K. Doye, D.J. Wales, J. Chem. Soc., Faraday Trans. 93, 4233 (1997)CrossRefGoogle Scholar
  15. 15.
    J.A. Northby, J. Xie, D.L. Freeman, J.D. Doll, Z. Phys. D 12, 69 (1989)Google Scholar
  16. 16.
    J.W. Lee, G.D. Stein, J. Phys. Chem. 91, 2450 (1987)Google Scholar
  17. 17.
    K. Clemenger, Phys. Rev. B 32, 1359 (1985)CrossRefGoogle Scholar
  18. 18.
    Y.J. Lee, E.K. Lee, S. Kim, Pyhs. Rev. Lett. 86, 999 (2001)CrossRefGoogle Scholar
  19. 19.
    A.L. Mackay, Acta Crystallogr. 15, 916 (1962)CrossRefGoogle Scholar
  20. 20.
    N.T. Wilson, R.L. Johnston, Eur. Phys. J. D 12, 161 (2000)CrossRefGoogle Scholar
  21. 21.
    J. Uppenbrink, D.J. Wales, J. Chem. Phys. 96, 8520 (1992)CrossRefGoogle Scholar
  22. 22.
    M. Andersson, A. Rosen, J. Chem. Phys. 117, 7051 (2002)CrossRefGoogle Scholar
  23. 23.
    E.K. Parks, L. Zhu, J. Ho, S.J. Riley, J. Chem. Phys. 100, 7206 (1994)CrossRefGoogle Scholar
  24. 24.
    E.K. Parks, G.C. Nieman, K.P. Kerns, S.J. Riley, J. Chem. Phys. 108, 3731 (1998)CrossRefGoogle Scholar
  25. 25.
    E.K. Parks, S.J. Riley, Z. Phys. D 33, 59 (1995)Google Scholar
  26. 26.
    E.K. Parks, B.J. Winter, T.D. Klots, S.J. Riley, J. Chem. Phys. 94, 1882 (1991)CrossRefGoogle Scholar
  27. 27.
    R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002)Google Scholar
  28. 28.
    N.T. Wilson, R.L. Johnston, Phys. Chem. Chem. Phys. 4, 4168 (2002)CrossRefGoogle Scholar
  29. 29.
    http://brian.ch.cam.ac.uk/CCD.htmlGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Computer EngineeringÇankaya UniversityBalgat AnkaraTurkey
  2. 2.Department of Electronic and Communication EngineeringÇankaya UniversityBalgat AnkaraTurkey

Personalised recommendations