Advertisement

Time reversal and exceptional points

  • H. L. Harney
  • W. D. Heiss
Article

Abstract.

Eigenvectors of decaying quantum systems are studied at exceptional points of the Hamiltonian. Special attention is paid to the properties of the system under time reversal symmetry breaking. At the exceptional point the chiral character of the system -- found for time reversal symmetry -- generically persists. It is, however, no longer circular but rather elliptic.

Keywords

Symmetry Breaking Quantum System Time Reversal Time Reversal Symmetry Exceptional Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kato, Perturbation theory of linear operators (Springer, Berlin, 1966)Google Scholar
  2. 2.
    W.D. Heiss, A.L. Sannino, J. Phys. A 23, 1167 (1990); Phys. Rev. A 43, 4159 (1991)CrossRefGoogle Scholar
  3. 3.
    M.V. Berry, D.H.J. O’Dell, J. Phys. A 31, 2093 (1998)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    W.D. Heiss, Eur. Phys. J. D 7, 1 (1999); Phys. Rev. E 61, 929 (2000)CrossRefGoogle Scholar
  5. 5.
    E. Hernandez, A. Jaureguit, A. Mondragon, J. Phys. A 33, 4507 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    M.V. Berry, M. Wilkinson, Proc. R. Soc. Lond. A 392, 15 (1984)MathSciNetGoogle Scholar
  7. 7.
    O. Latinne, N.J. Kylstra, M. Dörr, J. Purvis, M. Terao-Dunseath, C.J. Jochain, P.G. Burke, C.J. Noble, Phys. Rev. Lett. 74, 46 (1995)CrossRefGoogle Scholar
  8. 8.
    A.L. Shuvalov, N.H. Scott, Acta Mech. 140, 1 (2000)MATHGoogle Scholar
  9. 9.
    P.v. Brentano, M. Philipp, Phys. Lett. B 454, 171 (1999); M. Philipp et al. , Phys. Rev. E 62, 1922 (2000)CrossRefGoogle Scholar
  10. 10.
    C. Dembowski, H.-D. Gräf, H.L. Harney, A. Heine, W.D. Heiss, H. Rehfeld, A. Richter, Phys. Rev. Lett. 86, 787 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Pancharatnam, Proc. Ind. Acad. Sci. XLII, 86 (1955)Google Scholar
  12. 12.
    M.V. Berry, Curr. Sci. 67, 220 (1994)Google Scholar
  13. 13.
    M.V. Berry, M.R. Dennis, Proc. Roy. Soc. A 459, 1261 (2003)CrossRefGoogle Scholar
  14. 14.
    M.K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmeyer, A. Ziegler, Phys. Rev. Lett. 77, 4980 (1996)CrossRefGoogle Scholar
  15. 15.
    H.J. Korsch, S. Mossmann, J. Phys. A: Math. Gen. 36, 2139 (2003); F. Keck, H.J. Korsch, S. Mossmann, J. Phys. A: Math. Gen. 36, 2125 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    W.D. Heiss, H.L. Harney, Eur. Phys. J. D 17, 149 (2001)CrossRefGoogle Scholar
  17. 17.
    C. Dembowski, B. Dietz, H.-D. Gräf, H.L. Harney, A. Heine, W.D. Heiss, A. Richter, Phys. Rev. Lett. 90, 034101 (2003)CrossRefGoogle Scholar
  18. 18.
    A. Richter, H.-D. Gräf, C. Dembowski, private communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Department of PhysicsUniversity of StellenboschMatielandSouth Africa

Personalised recommendations