Electron capture processes in strongly coupled semiclassical plasmas

  • Young-Dae Jung


The electron captures by projectile ions from hydrogenic ions are investigated in strongly coupled semiclassical plasmas. The electron capture radius by the projectile ion is obtained by the effective screened pseudopotential model taking into account both the plasma screening and quantum effects. The semiclassical version of the Bohr-Lindhard method is applied to obtain the electron capture probability. The impact-parameter trajectory analysis is applied to the motion of the projectile ion in order to visualize the electron capture radius and capture probability as functions of the impact parameter, thermal de Broglie wavelength and Debye length. The results show that the quantum and plasma screening effects significantly reduce the electron capture probability and the capture radius. It is found that the electron capture position is shifted to the core of the projectile ion with increasing the thermal de Broglie wavelength. It is also found that the quantum effects on the electron capture probability are more significant than the collective screening effects on the electron capture probability. The electron capture probability is found to be significantly increased with an increase of the charge.


Electron Capture Impact Parameter Quantum Effect Capture Probability Debye Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.K. Janev, L.P. Presnyakov, V.P. Shevelko, Physics of Highly Charged Ions (Springer-Verlag, Berlin, 1985)Google Scholar
  2. 2.
    N. Bohr, J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 1 (1954)MATHGoogle Scholar
  3. 3.
    H. Ryufuku, T. Watanabe, Phys. Rev. A 20, 1828 (1979)CrossRefGoogle Scholar
  4. 4.
    D. Brandt, Nucl. Instrum. Meth. 214, 93 (1983)CrossRefGoogle Scholar
  5. 5.
    N.J. Peacock, Applied Atomic Collision Physics, Plasmas, edited by C.F. Barnett, M.F.A. Harrison (Academic Press, Orlando, 1984), Vol. 2Google Scholar
  6. 6.
    B.H. Bransden, M.R.C. McDowell, Charge Exchange and the Theory of Ion-Atom Collision (Clarendon Press, Oxford, 1992)Google Scholar
  7. 7.
    V.P. Shevelko, L.A. Vainshtein, Atomic Physics for Hot Plasmas (Institute of Physics, Bristol, 1993)Google Scholar
  8. 8.
    I. Ben-Itzhak, A. Jaint, O.L. Weaver, J. Phys. B 26, 1711 (1993)CrossRefGoogle Scholar
  9. 9.
    I.I. Sobel’man, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, 2nd edn. (Springer-Verlag, Berlin, 1995)Google Scholar
  10. 10.
    Y.-D. Jung, Phys. Plasmas 4, 16 (1997)CrossRefGoogle Scholar
  11. 11.
    I.H. Hutchinson, Principles of Plasma Diagnostics, 2nd edn. (Cambridge University Press, Cambridge, 2002)Google Scholar
  12. 12.
    V.E. Fortov, I.T. Iakubov, The Physics of Non-Ideal Plasma(World Scientific Publishing, Singapore, 2000)Google Scholar
  13. 13.
    C. Deutsch, Y. Furutani, M.A. Gombert, Phys. Rep. 69, 85 (1981)CrossRefGoogle Scholar
  14. 14.
    F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)CrossRefGoogle Scholar
  15. 15.
    D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequlibrium Processes, Basic Concepts, Kinetic Theory (Akademie-Verlag, Berlin, 1996), Vol. 1Google Scholar
  16. 16.
    Yu.V. Arkhipov, A.E. Davletov, Phys. Lett. A 247, 339 (1998)CrossRefGoogle Scholar
  17. 17.
    Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, Eur. Phys. J. D 8, 299 (2000)CrossRefGoogle Scholar
  18. 18.
    Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, K.V. Strarikov, Plasma Phys. Control. Fusion 42, 455 (2000)CrossRefGoogle Scholar
  19. 19.
    T.S. Ramazanov, S.K. Kodanova, Phys. Plasmas 8, 5049 (2001)CrossRefGoogle Scholar
  20. 20.
    T.S. Ramazanov, K.N. Dzhumagulova, Phys. Plasmas 9, 3758 (2002)CrossRefGoogle Scholar
  21. 21.
    Y.-D. Jung, Astrophys. J. 409, 841 (1993)CrossRefGoogle Scholar
  22. 22.
    J.-S. Yoon, Y.-D. Jung, Phys. Plasmas 4, 3477 (1997)CrossRefGoogle Scholar
  23. 23.
    S.P. Khare, Introduction to the Theory of Collisions of Electrons with Atoms and Molecules (Kluwer/Plenum Press, New York, 2000)Google Scholar
  24. 24.
    M. Abramowitz, A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)Google Scholar
  25. 25.
    Y.-D. Jung, Phys. Plasmas 4, 2756 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of PhysicsHanyang UniversityAnsan, Kyunggi-DoSouth Korea
  2. 2.Department of Physics, 0319University of California, San DiegoLa JollaUSA

Personalised recommendations