Skip to main content
Log in

Abstract.

The electron captures by projectile ions from hydrogenic ions are investigated in strongly coupled semiclassical plasmas. The electron capture radius by the projectile ion is obtained by the effective screened pseudopotential model taking into account both the plasma screening and quantum effects. The semiclassical version of the Bohr-Lindhard method is applied to obtain the electron capture probability. The impact-parameter trajectory analysis is applied to the motion of the projectile ion in order to visualize the electron capture radius and capture probability as functions of the impact parameter, thermal de Broglie wavelength and Debye length. The results show that the quantum and plasma screening effects significantly reduce the electron capture probability and the capture radius. It is found that the electron capture position is shifted to the core of the projectile ion with increasing the thermal de Broglie wavelength. It is also found that the quantum effects on the electron capture probability are more significant than the collective screening effects on the electron capture probability. The electron capture probability is found to be significantly increased with an increase of the charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Janev, L.P. Presnyakov, V.P. Shevelko, Physics of Highly Charged Ions (Springer-Verlag, Berlin, 1985)

  2. N. Bohr, J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 1 (1954)

    MATH  Google Scholar 

  3. H. Ryufuku, T. Watanabe, Phys. Rev. A 20, 1828 (1979)

    Article  Google Scholar 

  4. D. Brandt, Nucl. Instrum. Meth. 214, 93 (1983)

    Article  Google Scholar 

  5. N.J. Peacock, Applied Atomic Collision Physics, Plasmas, edited by C.F. Barnett, M.F.A. Harrison (Academic Press, Orlando, 1984), Vol. 2

  6. B.H. Bransden, M.R.C. McDowell, Charge Exchange and the Theory of Ion-Atom Collision (Clarendon Press, Oxford, 1992)

  7. V.P. Shevelko, L.A. Vainshtein, Atomic Physics for Hot Plasmas (Institute of Physics, Bristol, 1993)

  8. I. Ben-Itzhak, A. Jaint, O.L. Weaver, J. Phys. B 26, 1711 (1993)

    Article  Google Scholar 

  9. I.I. Sobel’man, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, 2nd edn. (Springer-Verlag, Berlin, 1995)

  10. Y.-D. Jung, Phys. Plasmas 4, 16 (1997)

    Article  Google Scholar 

  11. I.H. Hutchinson, Principles of Plasma Diagnostics, 2nd edn. (Cambridge University Press, Cambridge, 2002)

  12. V.E. Fortov, I.T. Iakubov, The Physics of Non-Ideal Plasma(World Scientific Publishing, Singapore, 2000)

  13. C. Deutsch, Y. Furutani, M.A. Gombert, Phys. Rep. 69, 85 (1981)

    Article  Google Scholar 

  14. F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)

    Article  Google Scholar 

  15. D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequlibrium Processes, Basic Concepts, Kinetic Theory (Akademie-Verlag, Berlin, 1996), Vol. 1

  16. Yu.V. Arkhipov, A.E. Davletov, Phys. Lett. A 247, 339 (1998)

    Article  Google Scholar 

  17. Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, Eur. Phys. J. D 8, 299 (2000)

    Article  Google Scholar 

  18. Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, K.V. Strarikov, Plasma Phys. Control. Fusion 42, 455 (2000)

    Article  Google Scholar 

  19. T.S. Ramazanov, S.K. Kodanova, Phys. Plasmas 8, 5049 (2001)

    Article  Google Scholar 

  20. T.S. Ramazanov, K.N. Dzhumagulova, Phys. Plasmas 9, 3758 (2002)

    Article  Google Scholar 

  21. Y.-D. Jung, Astrophys. J. 409, 841 (1993)

    Article  Google Scholar 

  22. J.-S. Yoon, Y.-D. Jung, Phys. Plasmas 4, 3477 (1997)

    Article  Google Scholar 

  23. S.P. Khare, Introduction to the Theory of Collisions of Electrons with Atoms and Molecules (Kluwer/Plenum Press, New York, 2000)

  24. M. Abramowitz, A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

  25. Y.-D. Jung, Phys. Plasmas 4, 2756 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Dae Jung.

Additional information

Received: 27 June 2003

PACS:

52.20.-j Elementary processes in plasmas

Young-Dae Jung: Permanent address: Department of Physics, Hanyang University, Ansan, Kyunggi-Do 425-791, South Korea, yjung@bohr.hanyang.ac.kr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, YD. Electron capture processes in strongly coupled semiclassical plasmas. Eur. Phys. J. D 28, 229–234 (2004). https://doi.org/10.1140/epjd/e2003-00303-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00303-6

Keywords

Navigation