Nondispersive electromagnetic beams in plasmas



We prove that different modes of nondispersive electromagnetic beams can propagate in a stationary isotropic plasma. But, a stationary plasma in a uniform magnetic field may only support a mode at frequencies less than the angular cyclotron frequency.


Magnetic Field Cyclotron Frequency Stationary Plasma Uniform Magnetic Field Isotropic Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bateman, Electrical and Optical Wave Motion (University Press, Cambridge, 1915)Google Scholar
  2. 2.
    M. Zamboni-Rachid, E. Recami, H.E. Fernandez-Figueroa, Eur. Phys. J. D 21, 217 (2002)CrossRefGoogle Scholar
  3. 3.
    P. Hillion, Eur. Phys. J. B 30, 527 (2002)Google Scholar
  4. 4.
    A.P. Kiselev, J. Phys. A: Math. Gen. 36, L435 (2003)Google Scholar
  5. 5.
    J.Y. Lu, J.F. Greenleaf, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 37, 438 (1990)CrossRefGoogle Scholar
  6. 6.
    J.N. Brittingham, J. Appl. Phys. 54, 1179 (1983)CrossRefGoogle Scholar
  7. 7.
    J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987)Google Scholar
  8. 8.
    J. Salo, thesis, University Technology, Helsinki, 2003Google Scholar
  9. 9.
    K.M. Iftekharuddin, M.A. Karim, Appl. Opt. 31, 4853 (1992)Google Scholar
  10. 10.
    M. Nisoli, E. Priori, G. Sansone, S. Stagira, G. Cerullo, S.D. Sivestri, Phys. Rev. Lett. 88, 033902 (2002)CrossRefGoogle Scholar
  11. 11.
    P. Hillion, Phys. Scripta 67, 466 (2003)CrossRefGoogle Scholar
  12. 12.
    W.B. Thomson, An Introduction to Plasma Physics ( Pergamon, Oxford, 1962)Google Scholar
  13. 13.
    S. Ramo, J.H. Whinnery, Th. van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965)Google Scholar
  14. 14.
    G. Dahlquist, BIT 33, 85 (1993)MathSciNetMATHGoogle Scholar
  15. 15.
    F. Bloom, Ill-posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory (SIAM, Philadelphia, 1981)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institut Henri PoincaréLe VésinetFrance

Personalised recommendations