Skip to main content
Log in

Abstract.

Starting from two cubic pieces of a MgO crystal ((3 x 3 x 3) and (5 x 5 x 5)), both containing a central oxygen atom, two clusters are simulated with the help of a DFT-LDA method. These clusters are charged in order to be equivalent to pieces of a neutral crystal. In each cluster, a neutral vacancy analogous to a F center is created by removing the central oxygen atom. Then, F + and F + + centers are simulated by removing one and two electrons. The main differences and similarities between the two sizes of clusters are studied: geometries, Mulliken charges, electronic distributions, gaps, ionisation potentials. An important result is that in any case, when a F center is simulated, the vacancy does not accept more than about one electron, the second one being spread in the rest of the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For instance see P. Joyes, Monographie de Physique: Les Agrégats Inorganiques Élémentaires (Éditions de Physique, Paris, 1990)

  2. M.R. Hayns, L. Dissado, Theoret. Chim. Acta 37, 147 (1975)

    Google Scholar 

  3. J.K. Rudra, W. Beall Fowler, Phys. Rev. B 35, 8223 (1987)

    Article  Google Scholar 

  4. W.A. Saunders, Phy. Rev. B 37, 6583 (1988)

    Article  Google Scholar 

  5. W.A. Saunders, Z. Phys. D 12, 601 (1989)

    Google Scholar 

  6. A. Pandey, J.M. Vail, J. Phys. Cond. Matt. 1, 2801 (1989)

    Article  Google Scholar 

  7. R.W. Grimes, R.A. Catlow, A. Marshall Stoneham, J. Chem. Soc. Faraday Transl. 2 85, 485 (1989)

    Google Scholar 

  8. J.M. Vail, J. Phys. Chem. Sol. 51, 589 (1990)

    Article  Google Scholar 

  9. P.J. Ziemann, A.W. Castleman Jr, J. Chem. Phys. 94, 718 (1991)

    Article  Google Scholar 

  10. P.J. Ziemann, A.W. Castleman Jr, Phys. Rev. B 44, 6488 (1991)

    Article  Google Scholar 

  11. P.J. Ziemann, A.W. Castleman Jr, Z.Phys. D 20, 97 (1991)

    Google Scholar 

  12. A.V. Bezel’, V.A. Lobach, Sov. Phys. Sol. State 33, 744 (1991)

    Google Scholar 

  13. C. Bréchignac, Ph. Cahuzac, F. Carlier, M. de Frutos, J. Leygnier, J.Ph. Roux, J. Chem. Phys. 99, 6848 (1993)

    Article  Google Scholar 

  14. J.M. Recio, R. Pandey, A. Ayuela, A.B. Kunz, J. Chem. Phys. 98, 4783 (1993)

    Article  Google Scholar 

  15. J.M. Recio, R. Pandey, Phys. Rev. A 47, 2075 (1993)

    Article  Google Scholar 

  16. G. Pacchioni, C. Sousa, F. Illas, F. Parmigiani, P.S. Bagus, Phys. Rev. B 48, 11573 (1993)

    Article  Google Scholar 

  17. S. Veliah, R. Pandey, Y.S. Li, J.M. Newsam, B. Vessal, Chem. Phys. Lett. 235, 53 (1995)

    Article  Google Scholar 

  18. A. Gibson, R. Haydock, J.P. LaFemina, Phys. Rev. B 50, 2582 (1994)

    Article  Google Scholar 

  19. A.-M. Ferrari, G. Pacchioni, J. Phys. Chem. 99, 17010 (1995)

    Google Scholar 

  20. W.C. Mackrodt, R.F. Stewart, J. Phys. C 10, 1431 (1977)

    Article  Google Scholar 

  21. E. Scorza, U. Birkenheuer, C. Pisani, J. Chem. Phys. 107, 9645 (1997)

    Article  Google Scholar 

  22. F. Illas, G. Pacchioni, J. Chem. Phys. 108, 7835 (1998)

    Article  Google Scholar 

  23. S. Veliah, Kai-hua Xiang, R. Pandey, J.M. Recio, J.M. Newsam, J. Phys. Chem. B 102, 1126 (1998)

    Article  Google Scholar 

  24. P.V. Sushko, A.L. Shluger, C. Pichard, A. Catlow, Surf. Sci. 450, 153 (2000)

    Article  Google Scholar 

  25. A.C. Pineda, S.P. Karna, J. Phys. Chem. A 104, 4699 (2000)

    Article  Google Scholar 

  26. C. Coudray, G. Blaise, M.J. Malliavin, Eur. Phys. J. D 11, 127 (2000)

    Article  Google Scholar 

  27. M.J. Malliavin, C. Coudray, J. Chem. Phys. 106, 2323 (1997)

    Article  Google Scholar 

  28. B.M. Klein, W.E. Pickett, L.L. Boyer, R. Zeller, Phys. Rev. B 35, 5802 (1987)

    Article  Google Scholar 

  29. Q.S. Wang, N.A.W. Holzwarth, Phys. Rev. B 41, 3211 (1990)

    Article  Google Scholar 

  30. A. De Vita, M.J. Gillan, J.S. Lin, M.C. Payne, I. \~Stich, L.J. Clarke, Phys. Rev. B 46, 12964 (1992)

    Article  Google Scholar 

  31. M. Boero, A. Pasquarello, J. Sarnthein, R. Car, Phys. Rev. Lett. 78, 887 (1997)

    Article  Google Scholar 

  32. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  Google Scholar 

  33. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  Google Scholar 

  34. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  Google Scholar 

  35. B. Delley, J. Chem. Phys. 94, 7245 (1991)

    Article  Google Scholar 

  36. L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)

    Article  Google Scholar 

  37. In crystalline MgO a similar result was obtained as soon as 1967 by W.P. Unruh, J.W. Culvahouse, Phys. Rev. 154, 861 (1967)

    Article  Google Scholar 

  38. R.W. Grimes, C.R.A. Catlow, A.M. Stoneham, J. Phys. Cond. Matt. 1, 7367 (1989)

    Article  Google Scholar 

  39. S. Moukouri, thesis, Orsay, 1993

  40. E. Castanier, C. Noguera, Surf. Sci. 364, 1 (1996)

    Article  Google Scholar 

  41. L.N. Kantorovich, J.M. Holender, M.J. Gillan, Surf. Sci. 343, 221 (1995)

    Article  Google Scholar 

  42. CRC Handbook of Chemistry and Physics, 72nd edn. (CRC Press, Boca Raton, 1992), pp. 12-8

  43. M. Gupta, private communication

  44. R.F.W. Bader, J. Chem. Phys. 73, 2871 (1980)

    Article  MathSciNet  Google Scholar 

  45. B. Silvi, A. Savin, Nature 371, 683 (1994)

    CAS  Google Scholar 

  46. P. Mori-Śanchez, J.M. Recio, B. Silvi, C. Sousa, A. Martin Pendas, V. Luaña, F. Illas, Phys. Rev. B 66, 075103 (2002)

    Article  Google Scholar 

  47. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

    Article  Google Scholar 

  48. CRC Handbook of Chemistry and Physics, 60th edn. (CRC Press, Boca Raton, 1980), p. D-72

  49. L. Kappers, R. Kroes, E. Hensley, Phys. Rev. B 1, 4150 (1970)

    Article  Google Scholar 

  50. A. Ayuela, J.M. López, J.A. Alonso, V. Luaña, Physica B 212, 329 (1995)

    Article  Google Scholar 

  51. M. Bertolus, V. Brenner, P. Millié, J. Chem. Phys. 115, 4070 (2001)

    Article  Google Scholar 

  52. U. Schönberger, F. Aryasetiawan, Phys. Rev. B 52, 8788 (1995)

    Article  Google Scholar 

  53. D.M. Roessler, W.C. Walker, Phys. Rev. 159, 733 (1967)

    Article  Google Scholar 

  54. P. Jonnard, C. Bonnelle, G. Blaise, G. Remond, C. Roques-Carmes, J. Appl. Phys. 88, 6413 (2000)

    Article  Google Scholar 

  55. P. Labastie, J.M. L’Hermite, Ph. Poncharal, M. Sence, J. Chem. Phys. 103, 6362 (1995)

    Article  Google Scholar 

  56. Ph. Poncharal, J.M. L’Hermite, P. Labastie, Chem. Phys. Lett. 253, 463 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Coudray.

Additional information

Received: 17 March 2003, Published online: 12 August 2003

PACS:

31.15.Ar Ab initio calculations - 36.40.Wa Charged clusters - 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coudray, C., Blaise, G. Some size-dependent electronic properties in charged MgO clusters. Eur. Phys. J. D 27, 115–124 (2003). https://doi.org/10.1140/epjd/e2003-00252-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00252-0

Keywords

Navigation