Some size-dependent electronic properties in charged MgO clusters

Article

Abstract.

Starting from two cubic pieces of a MgO crystal ((3 x 3 x 3) and (5 x 5 x 5)), both containing a central oxygen atom, two clusters are simulated with the help of a DFT-LDA method. These clusters are charged in order to be equivalent to pieces of a neutral crystal. In each cluster, a neutral vacancy analogous to a F center is created by removing the central oxygen atom. Then, F + and F + + centers are simulated by removing one and two electrons. The main differences and similarities between the two sizes of clusters are studied: geometries, Mulliken charges, electronic distributions, gaps, ionisation potentials. An important result is that in any case, when a F center is simulated, the vacancy does not accept more than about one electron, the second one being spread in the rest of the cluster.

Keywords

Oxygen Oxygen Atom Electronic Property Ionisation Potential Electronic Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For instance see P. Joyes, Monographie de Physique: Les Agrégats Inorganiques Élémentaires (Éditions de Physique, Paris, 1990)Google Scholar
  2. 2.
    M.R. Hayns, L. Dissado, Theoret. Chim. Acta 37, 147 (1975)Google Scholar
  3. 3.
    J.K. Rudra, W. Beall Fowler, Phys. Rev. B 35, 8223 (1987)CrossRefGoogle Scholar
  4. 4.
    W.A. Saunders, Phy. Rev. B 37, 6583 (1988)CrossRefGoogle Scholar
  5. 5.
    W.A. Saunders, Z. Phys. D 12, 601 (1989)Google Scholar
  6. 6.
    A. Pandey, J.M. Vail, J. Phys. Cond. Matt. 1, 2801 (1989)CrossRefGoogle Scholar
  7. 7.
    R.W. Grimes, R.A. Catlow, A. Marshall Stoneham, J. Chem. Soc. Faraday Transl. 2 85, 485 (1989)Google Scholar
  8. 8.
    J.M. Vail, J. Phys. Chem. Sol. 51, 589 (1990)CrossRefGoogle Scholar
  9. 9.
    P.J. Ziemann, A.W. Castleman Jr, J. Chem. Phys. 94, 718 (1991)CrossRefGoogle Scholar
  10. 10.
    P.J. Ziemann, A.W. Castleman Jr, Phys. Rev. B 44, 6488 (1991)CrossRefGoogle Scholar
  11. 11.
    P.J. Ziemann, A.W. Castleman Jr, Z.Phys. D 20, 97 (1991)Google Scholar
  12. 12.
    A.V. Bezel’, V.A. Lobach, Sov. Phys. Sol. State 33, 744 (1991)Google Scholar
  13. 13.
    C. Bréchignac, Ph. Cahuzac, F. Carlier, M. de Frutos, J. Leygnier, J.Ph. Roux, J. Chem. Phys. 99, 6848 (1993)CrossRefGoogle Scholar
  14. 14.
    J.M. Recio, R. Pandey, A. Ayuela, A.B. Kunz, J. Chem. Phys. 98, 4783 (1993)CrossRefGoogle Scholar
  15. 15.
    J.M. Recio, R. Pandey, Phys. Rev. A 47, 2075 (1993)CrossRefGoogle Scholar
  16. 16.
    G. Pacchioni, C. Sousa, F. Illas, F. Parmigiani, P.S. Bagus, Phys. Rev. B 48, 11573 (1993)CrossRefGoogle Scholar
  17. 17.
    S. Veliah, R. Pandey, Y.S. Li, J.M. Newsam, B. Vessal, Chem. Phys. Lett. 235, 53 (1995)CrossRefGoogle Scholar
  18. 18.
    A. Gibson, R. Haydock, J.P. LaFemina, Phys. Rev. B 50, 2582 (1994)CrossRefGoogle Scholar
  19. 19.
    A.-M. Ferrari, G. Pacchioni, J. Phys. Chem. 99, 17010 (1995)Google Scholar
  20. 20.
    W.C. Mackrodt, R.F. Stewart, J. Phys. C 10, 1431 (1977)CrossRefGoogle Scholar
  21. 21.
    E. Scorza, U. Birkenheuer, C. Pisani, J. Chem. Phys. 107, 9645 (1997)CrossRefGoogle Scholar
  22. 22.
    F. Illas, G. Pacchioni, J. Chem. Phys. 108, 7835 (1998)CrossRefGoogle Scholar
  23. 23.
    S. Veliah, Kai-hua Xiang, R. Pandey, J.M. Recio, J.M. Newsam, J. Phys. Chem. B 102, 1126 (1998)CrossRefGoogle Scholar
  24. 24.
    P.V. Sushko, A.L. Shluger, C. Pichard, A. Catlow, Surf. Sci. 450, 153 (2000)CrossRefGoogle Scholar
  25. 25.
    A.C. Pineda, S.P. Karna, J. Phys. Chem. A 104, 4699 (2000)CrossRefGoogle Scholar
  26. 26.
    C. Coudray, G. Blaise, M.J. Malliavin, Eur. Phys. J. D 11, 127 (2000)CrossRefGoogle Scholar
  27. 27.
    M.J. Malliavin, C. Coudray, J. Chem. Phys. 106, 2323 (1997)CrossRefGoogle Scholar
  28. 28.
    B.M. Klein, W.E. Pickett, L.L. Boyer, R. Zeller, Phys. Rev. B 35, 5802 (1987)CrossRefGoogle Scholar
  29. 29.
    Q.S. Wang, N.A.W. Holzwarth, Phys. Rev. B 41, 3211 (1990)CrossRefGoogle Scholar
  30. 30.
    A. De Vita, M.J. Gillan, J.S. Lin, M.C. Payne, I. \~Stich, L.J. Clarke, Phys. Rev. B 46, 12964 (1992)CrossRefGoogle Scholar
  31. 31.
    M. Boero, A. Pasquarello, J. Sarnthein, R. Car, Phys. Rev. Lett. 78, 887 (1997)CrossRefGoogle Scholar
  32. 32.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)CrossRefGoogle Scholar
  33. 33.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)CrossRefGoogle Scholar
  34. 34.
    B. Delley, J. Chem. Phys. 92, 508 (1990)CrossRefGoogle Scholar
  35. 35.
    B. Delley, J. Chem. Phys. 94, 7245 (1991)CrossRefGoogle Scholar
  36. 36.
    L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)CrossRefGoogle Scholar
  37. 37.
    In crystalline MgO a similar result was obtained as soon as 1967 by W.P. Unruh, J.W. Culvahouse, Phys. Rev. 154, 861 (1967)CrossRefGoogle Scholar
  38. 38.
    R.W. Grimes, C.R.A. Catlow, A.M. Stoneham, J. Phys. Cond. Matt. 1, 7367 (1989)CrossRefGoogle Scholar
  39. 39.
    S. Moukouri, thesis, Orsay, 1993Google Scholar
  40. 40.
    E. Castanier, C. Noguera, Surf. Sci. 364, 1 (1996)CrossRefGoogle Scholar
  41. 41.
    L.N. Kantorovich, J.M. Holender, M.J. Gillan, Surf. Sci. 343, 221 (1995)CrossRefGoogle Scholar
  42. 42.
    CRC Handbook of Chemistry and Physics, 72nd edn. (CRC Press, Boca Raton, 1992), pp. 12-8Google Scholar
  43. 43.
    M. Gupta, private communicationGoogle Scholar
  44. 44.
    R.F.W. Bader, J. Chem. Phys. 73, 2871 (1980)CrossRefMathSciNetGoogle Scholar
  45. 45.
    B. Silvi, A. Savin, Nature 371, 683 (1994)Google Scholar
  46. 46.
    P. Mori-Śanchez, J.M. Recio, B. Silvi, C. Sousa, A. Martin Pendas, V. Luaña, F. Illas, Phys. Rev. B 66, 075103 (2002)CrossRefGoogle Scholar
  47. 47.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)CrossRefGoogle Scholar
  48. 48.
    CRC Handbook of Chemistry and Physics, 60th edn. (CRC Press, Boca Raton, 1980), p. D-72Google Scholar
  49. 49.
    L. Kappers, R. Kroes, E. Hensley, Phys. Rev. B 1, 4150 (1970)CrossRefGoogle Scholar
  50. 50.
    A. Ayuela, J.M. López, J.A. Alonso, V. Luaña, Physica B 212, 329 (1995)CrossRefGoogle Scholar
  51. 51.
    M. Bertolus, V. Brenner, P. Millié, J. Chem. Phys. 115, 4070 (2001)CrossRefGoogle Scholar
  52. 52.
    U. Schönberger, F. Aryasetiawan, Phys. Rev. B 52, 8788 (1995)CrossRefGoogle Scholar
  53. 53.
    D.M. Roessler, W.C. Walker, Phys. Rev. 159, 733 (1967)CrossRefGoogle Scholar
  54. 54.
    P. Jonnard, C. Bonnelle, G. Blaise, G. Remond, C. Roques-Carmes, J. Appl. Phys. 88, 6413 (2000)CrossRefGoogle Scholar
  55. 55.
    P. Labastie, J.M. L’Hermite, Ph. Poncharal, M. Sence, J. Chem. Phys. 103, 6362 (1995)CrossRefGoogle Scholar
  56. 56.
    Ph. Poncharal, J.M. L’Hermite, P. Labastie, Chem. Phys. Lett. 253, 463 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance

Personalised recommendations