Optimization of the focused flux of high harmonics

  • S. Kazamias
  • D. Douillet
  • C. Valentin
  • Th. Lefrou
  • G. Grillon
  • G. Mullot
  • F. Augé
  • P. Mercére
  • Ph. Zeitoun
  • Ph. Balcou
OriginalPaper

Abstract.

Following the theoretical predictions [1], the observation of two-photon processes by interaction of vacuum ultraviolet (VUV) radiation with inner-shell levels of atoms requires focused intensities in the 1013-1014 W/cm2 range. Our aim is to reach this regime in order to study non-linear optics at these wavelengths. We first optimized the high harmonic conversion efficiency in argon by studying the best experimental conditions for phase-matching, concentrating on focus geometry related to laser energy, cell length and position relative to the focus. We then studied the resulting harmonic beam focusability by a toroidal mirror (f=10 cm) and made an image of the harmonic focus. We conclude with an evaluation of the focused intensity that we are able to reach experimentally.

Keywords

Radiation Argon Theoretical Prediction Conversion Efficiency Laser Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schnuerer , Phys. Rev. Lett. 83, 722 (1999)CrossRefGoogle Scholar
  2. 2.
    D. Descamps , Phys. Rev. A 64, 031404 (2001)CrossRefGoogle Scholar
  3. 3.
    Y. Kobayashi , Opt. Lett. 23, 64 (1998)Google Scholar
  4. 4.
    J.F. Hergott , Phys. Rev. A 66, 021801R (2002)CrossRefGoogle Scholar
  5. 5.
    E. Takahashi , Phys. Rev. A 66, 021802R (2002)CrossRefGoogle Scholar
  6. 6.
    S. Kazamias , Phys. Rev. Lett. (to be published)Google Scholar
  7. 7.
    S. Kazamias , Eur. Phys. J. D 21, 353 (2002)CrossRefGoogle Scholar
  8. 8.
    A. L’Huillier , Phys. Rev. A 48, R3433 (1993)Google Scholar
  9. 9.
    E. Constant , Phys. Rev. Lett. 82, 1668 (1999)CrossRefGoogle Scholar
  10. 10.
    R.A. Bartels , Science 297, 376 (2002)Google Scholar
  11. 11.
    N.B. Delone, V.P. Krainov, Phys.-Usp. 41, 469 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Lewenstein , Phys. Rev. A 52, 4747 (1995)CrossRefGoogle Scholar
  13. 13.
    P. Saliéres , Phys. Rev. Lett. 74, 3776 (1995)CrossRefGoogle Scholar
  14. 14.
    Ph. Balcou , Phys. Rev. A 55, 3204 (1997)CrossRefGoogle Scholar
  15. 15.
    L. Le Déroff , Opt. Lett. 23, 1544 (1998)Google Scholar
  16. 16.
    M. Schnuerer , Appl. Phys. B 70, S227 (2000)Google Scholar
  17. 17.
    C. Valentin , Opt. Lett. (to be published)Google Scholar
  18. 18.
    M. Gaarde, K. Schafer, Phys. Rev. Lett. 89, 213901 (2002)CrossRefGoogle Scholar
  19. 19.
    P.M. Paul , Science 292, 1689 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • S. Kazamias
    • 1
  • D. Douillet
    • 1
  • C. Valentin
    • 1
  • Th. Lefrou
    • 1
  • G. Grillon
    • 1
  • G. Mullot
    • 1
  • F. Augé
    • 1
  • P. Mercére
    • 1
    • 2
  • Ph. Zeitoun
    • 1
    • 2
  • Ph. Balcou
    • 1
  1. 1.Laboratoire d’Optique AppliquéeENSTA-École Polytechnique(CNRS UMR 7639)Palaiseau CedexFrance
  2. 2.Laboratoire d’Interaction du rayonnement X avec la MatiéreUniversité Paris-SudOrsay CedexFrance

Personalised recommendations