Skip to main content
Log in

N=2 superparticles, RR fields, and noncommutative structures of (super)-spacetime

  • Young Scientist
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

The recent developments in superstring theory prompted the study of non-commutative structures in superspace. Considering bosonic and fermionic strings in a constant antisymmetric background yields a non-vanishing commutator between the bosonic coordinates of the spacetime. Likewise, the presence of constant Ramond–Ramond (RR) background leads to a non-vanishing anti-commutator for the Grassmann coordinates of the superspace. The non-vanishing commutation relation between bosonic coordinates can also be derived using a particle moving in a magnetic background, we use superparticle to show how the non-commutative structures emerge in superspace. The derivation is original and it is shown that only a D0-brane in supergravity background reproduces the results obtained in string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.S. Chu, P.M. Ho, Nucl. Phys. B 550, 151 (1999) [arXiv:hep-th/9812219]

    Article  MATH  ADS  Google Scholar 

  2. C.S. Chu, P.M. Ho, Nucl. Phys. B 568, 447 (2000) [arXiv:hep-th/9906192]

    Article  MATH  ADS  Google Scholar 

  3. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, JHEP 9902, 016 (1999) [arXiv:hep-th/9810072]

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Seiberg, E. Witten, JHEP 9909, 032 (1999) [arXiv:hep-th/9908142]

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Bigatti, L. Susskind, Phys. Rev. D 62, 066004 (2000) [arXiv:hep-th/9908056]

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Peierls, Z. Phys. 80, 763 (1933)

    Article  MATH  ADS  Google Scholar 

  7. G.V. Dunne, R. Jackiw, C.A. Trugenberger, Phys. Rev. D 41, 661 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Jackiw, Nucl. Phys. Proc. Suppl. 108, 30 (2002); Phys. Part. Nucl. 33, S6 (2002 LNPHA,616,294-304.2003) [arXiv:hep-th/0110057]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. H.S. Snyder, Phys. Rev. 71, 38 (1947)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. C.N. Yang, Phys. Rev. 72, 874 (1947)

    Article  MATH  ADS  Google Scholar 

  11. P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, arXiv:hep-th/0510059

  12. R. Casalbuoni, Nuovo Cim. A 33, 389 (1976)

    MathSciNet  Google Scholar 

  13. L. Brink, J.H. Schwarz, CALT-68-813

  14. W. Siegel, Phys. Lett. B 128, 397 (1983)

    Article  ADS  Google Scholar 

  15. P.A. Grassi, G. Policastro, M. Porrati, Nucl. Phys. B 606, 380 (2001) [arXiv:hep-th/0009239]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. M.B. Green, J.H. Schwarz, E. Witten, “Superstring Theory. Vol. 1: Introduction” and “Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology”

  17. N. Berkovits, JHEP 04, 018 (2000) hep-th/0001035

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. N. Berkovits, JHEP 0109, 016 (2001) [arXiv:hep-th/0105050].

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Berkovits, hep-th/0209059

  20. N. Berkovits, JHEP 0209, 051 (2002) [arXiv:hep-th/0201151]

    Article  MathSciNet  ADS  Google Scholar 

  21. P.A. Grassi, J.F. Morales, arXiv:hep-th/0510215

  22. P.A. Grassi, L. Tamassia, in preparation

  23. P.A. Grassi, G. Policastro, M. Porrati, P. van Nieuwenhuizen, JHEP 10, 054 (2002) hep-th/0112162; P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, JHEP 11, 001 (2002) hep-th/0202123; P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, Adv. Theor. Math. Phys. 7, 499 (2003) hep-th/0206216

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Chesterman, JHEP 02, 011 (2004) hep-th/0212261

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Aisaka, Y. Kazama, JHEP 02, 017 (2003) hep-th/0212316

    Article  MathSciNet  ADS  Google Scholar 

  26. P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, Phys. Lett. B 553, 96 (2003) [arXiv:hep-th/0209026]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string” J. Polchinski, “String theory. Vol. 2: Superstring theory and beyond”

  28. M.B. Green, M. Gutperle, P. Vanhove, Phys. Lett. B 409, 177 (1997) [arXiv:hep-th/9706175]; M.B. Green, H. h. Kwon, P. Vanhove, Phys. Rev. D 61, 104010 (2000) [arXiv:hep-th/9910055]

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Anguelova, P.A. Grassi, P. Vanhove, Nucl. Phys. B 702, 269 (2004) [arXiv:hep-th/0408171]

    Article  MathSciNet  ADS  Google Scholar 

  30. S.J. Gates, M.T. Grisaru, M. Rocek, W. Siegel, Front. Phys. 58, 1 (1983) [arXiv:hep-th/0108200]

    MathSciNet  ADS  Google Scholar 

  31. N. Berkovits, hep-th/0509120

  32. P.A. Grassi, N. Wyllard, arXiv:hep-th/0509140

  33. N. Wyllard, arXiv:hep-th/0509165

  34. O. Chandia, arXiv:hep-th/0509185

  35. P.A. Grassi, Y. Oz, arXiv:hep-th/0507168

  36. S. Ferrara, M.A. Lledo, JHEP 0005, 008 (2000) [arXiv:hep-th/0002084]

    Article  MathSciNet  ADS  Google Scholar 

  37. D. Klemm, S. Penati, L. Tamassia, Class. Quant. Grav. 20, 2905 (2003) [arXiv:hep-th/0104190]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. L. Brink, J.H. Schwarz, Phys. Lett. B 100, 310 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  39. J.H. Schwarz, P. Van Nieuwenhuizen, Lett. Nuovo Cim. 34 (1982) 21

    Google Scholar 

  40. I. Bars, C. Deliduman, A. Pasqua, B. Zumino, Phys. Rev. D 68, 106006 (2003) [arXiv:hep-th/0308107]

    Article  MathSciNet  ADS  Google Scholar 

  41. J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003) [arXiv:hep-th/0302078]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. H. Ooguri, C. Vafa, Adv. Theor. Math. Phys. 7, 53 (2003) [arXiv:hep-th/0302109]

    MathSciNet  Google Scholar 

  43. N. Berkovits, N. Seiberg, JHEP 0307, 010 (2003) [arXiv:hep-th/0306226]

    Article  MathSciNet  ADS  Google Scholar 

  44. N. Seiberg, JHEP 0306, 010 (2003) [arXiv:hep-th/0305248]

    Article  ADS  Google Scholar 

  45. L. Anguelova, P.A. Grassi, JHEP 0311, 010 (2003) [arXiv:hep-th/0307260]

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Henneaux, C. Teitelboim, “Quantization of gauge systems”, Princeton University Press, Princeton, New Jersey

  47. I. Oda, M. Tonin, Phys. Lett. B 520,398 (2001) [arXiv:hep-th/0109051]; M. Matone, L. Mazzucato, I. Oda, D. Sorokin, M. Tonin, Nucl. Phys. B 639, 182 (2002) [arXiv:hep-th/0206104]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Y. Aisaka, Y. Kazama, JHEP 0505, 046 (2005) [arXiv:hep-th/0502208]

    Article  MathSciNet  ADS  Google Scholar 

  49. N. Berkovits, P.S. Howe, Nucl. Phys. B 635, 75 (2002) [arXiv:hep-th/0112160]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. P.A. Grassi, L. Tamassia, JHEP 0407, 071 (2004) [arXiv:hep-th/0405072]

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Hatsuda, S. Iso, H. Umetsu, Nucl. Phys. B 671, 217 (2003) [arXiv:hep-th/0306251]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. N. Berkovits, C. Vafa, E. Witten, JHEP 9903, 018 (1999) [arXiv:hep-th/9902098]

    Article  MathSciNet  ADS  Google Scholar 

  53. N. Berkovits, O. Chandia, Nucl. Phys. B 596, 185 (2001) [arXiv:hep-th/0009168]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. N. Berkovits, JHEP 0204, 037 (2002) [arXiv:hep-th/0203248]

    Article  MathSciNet  ADS  Google Scholar 

  55. R.R. Metsaev, Nucl. Phys. B 625, 70 (2002) [arXiv:hep-th/0112044]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. R.R. Metsaev, A.A. Tseytlin, Phys. Rev. D 65, 126004 (2002) [arXiv:hep-th/0202109]

    Article  ADS  Google Scholar 

  57. M. Aganagic, C. Popescu, J.H. Schwarz, Nucl. Phys. B 495, 99 (1997) [arXiv:hep-th/9612080]

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.A. Grassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassi, P. N=2 superparticles, RR fields, and noncommutative structures of (super)-spacetime. Eur. Phys. J. C 46 (Suppl 2), 13–20 (2006). https://doi.org/10.1140/epjcd/s2006-03-002-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjcd/s2006-03-002-6

Keywords

Navigation