N=2 superparticles, RR fields, and noncommutative structures of (super)-spacetime

Young Scientist

Abstract

The recent developments in superstring theory prompted the study of non-commutative structures in superspace. Considering bosonic and fermionic strings in a constant antisymmetric background yields a non-vanishing commutator between the bosonic coordinates of the spacetime. Likewise, the presence of constant Ramond–Ramond (RR) background leads to a non-vanishing anti-commutator for the Grassmann coordinates of the superspace. The non-vanishing commutation relation between bosonic coordinates can also be derived using a particle moving in a magnetic background, we use superparticle to show how the non-commutative structures emerge in superspace. The derivation is original and it is shown that only a D0-brane in supergravity background reproduces the results obtained in string theory.

Keywords

Pure Spinor Ghost Number Dirac Bracket Brane Tension Supergravity Background 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.S. Chu, P.M. Ho, Nucl. Phys. B 550, 151 (1999) [arXiv:hep-th/9812219]MATHCrossRefADSGoogle Scholar
  2. 2.
    C.S. Chu, P.M. Ho, Nucl. Phys. B 568, 447 (2000) [arXiv:hep-th/9906192]MATHCrossRefADSGoogle Scholar
  3. 3.
    F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, JHEP 9902, 016 (1999) [arXiv:hep-th/9810072]MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    N. Seiberg, E. Witten, JHEP 9909, 032 (1999) [arXiv:hep-th/9908142]MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    D. Bigatti, L. Susskind, Phys. Rev. D 62, 066004 (2000) [arXiv:hep-th/9908056]MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    R. Peierls, Z. Phys. 80, 763 (1933)MATHCrossRefADSGoogle Scholar
  7. 7.
    G.V. Dunne, R. Jackiw, C.A. Trugenberger, Phys. Rev. D 41, 661 (1990)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    R. Jackiw, Nucl. Phys. Proc. Suppl. 108, 30 (2002); Phys. Part. Nucl. 33, S6 (2002 LNPHA,616,294-304.2003) [arXiv:hep-th/0110057]MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    H.S. Snyder, Phys. Rev. 71, 38 (1947)MATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    C.N. Yang, Phys. Rev. 72, 874 (1947)MATHCrossRefADSGoogle Scholar
  11. 11.
    P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, arXiv:hep-th/0510059Google Scholar
  12. 12.
    R. Casalbuoni, Nuovo Cim. A 33, 389 (1976)MathSciNetGoogle Scholar
  13. 13.
    L. Brink, J.H. Schwarz, CALT-68-813Google Scholar
  14. 14.
    W. Siegel, Phys. Lett. B 128, 397 (1983)CrossRefADSGoogle Scholar
  15. 15.
    P.A. Grassi, G. Policastro, M. Porrati, Nucl. Phys. B 606, 380 (2001) [arXiv:hep-th/0009239]MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    M.B. Green, J.H. Schwarz, E. Witten, “Superstring Theory. Vol. 1: Introduction” and “Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology”Google Scholar
  17. 17.
    N. Berkovits, JHEP 04, 018 (2000) hep-th/0001035MATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    N. Berkovits, JHEP 0109, 016 (2001) [arXiv:hep-th/0105050].MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    N. Berkovits, hep-th/0209059Google Scholar
  20. 20.
    N. Berkovits, JHEP 0209, 051 (2002) [arXiv:hep-th/0201151]MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    P.A. Grassi, J.F. Morales, arXiv:hep-th/0510215Google Scholar
  22. 22.
    P.A. Grassi, L. Tamassia, in preparationGoogle Scholar
  23. 23.
    P.A. Grassi, G. Policastro, M. Porrati, P. van Nieuwenhuizen, JHEP 10, 054 (2002) hep-th/0112162; P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, JHEP 11, 001 (2002) hep-th/0202123; P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, Adv. Theor. Math. Phys. 7, 499 (2003) hep-th/0206216MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    M. Chesterman, JHEP 02, 011 (2004) hep-th/0212261MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Y. Aisaka, Y. Kazama, JHEP 02, 017 (2003) hep-th/0212316MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, Phys. Lett. B 553, 96 (2003) [arXiv:hep-th/0209026]MATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string” J. Polchinski, “String theory. Vol. 2: Superstring theory and beyond”Google Scholar
  28. 28.
    M.B. Green, M. Gutperle, P. Vanhove, Phys. Lett. B 409, 177 (1997) [arXiv:hep-th/9706175]; M.B. Green, H. h. Kwon, P. Vanhove, Phys. Rev. D 61, 104010 (2000) [arXiv:hep-th/9910055]MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    L. Anguelova, P.A. Grassi, P. Vanhove, Nucl. Phys. B 702, 269 (2004) [arXiv:hep-th/0408171]MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    S.J. Gates, M.T. Grisaru, M. Rocek, W. Siegel, Front. Phys. 58, 1 (1983) [arXiv:hep-th/0108200]MathSciNetADSGoogle Scholar
  31. 31.
    N. Berkovits, hep-th/0509120Google Scholar
  32. 32.
    P.A. Grassi, N. Wyllard, arXiv:hep-th/0509140Google Scholar
  33. 33.
    N. Wyllard, arXiv:hep-th/0509165Google Scholar
  34. 34.
    O. Chandia, arXiv:hep-th/0509185Google Scholar
  35. 35.
    P.A. Grassi, Y. Oz, arXiv:hep-th/0507168Google Scholar
  36. 36.
    S. Ferrara, M.A. Lledo, JHEP 0005, 008 (2000) [arXiv:hep-th/0002084]MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    D. Klemm, S. Penati, L. Tamassia, Class. Quant. Grav. 20, 2905 (2003) [arXiv:hep-th/0104190]MATHMathSciNetCrossRefADSGoogle Scholar
  38. 38.
    L. Brink, J.H. Schwarz, Phys. Lett. B 100, 310 (1981)MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    J.H. Schwarz, P. Van Nieuwenhuizen, Lett. Nuovo Cim. 34 (1982) 21Google Scholar
  40. 40.
    I. Bars, C. Deliduman, A. Pasqua, B. Zumino, Phys. Rev. D 68, 106006 (2003) [arXiv:hep-th/0308107]MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003) [arXiv:hep-th/0302078]MATHMathSciNetCrossRefADSGoogle Scholar
  42. 42.
    H. Ooguri, C. Vafa, Adv. Theor. Math. Phys. 7, 53 (2003) [arXiv:hep-th/0302109]MathSciNetGoogle Scholar
  43. 43.
    N. Berkovits, N. Seiberg, JHEP 0307, 010 (2003) [arXiv:hep-th/0306226]MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    N. Seiberg, JHEP 0306, 010 (2003) [arXiv:hep-th/0305248]CrossRefADSGoogle Scholar
  45. 45.
    L. Anguelova, P.A. Grassi, JHEP 0311, 010 (2003) [arXiv:hep-th/0307260]MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    M. Henneaux, C. Teitelboim, “Quantization of gauge systems”, Princeton University Press, Princeton, New JerseyGoogle Scholar
  47. 47.
    I. Oda, M. Tonin, Phys. Lett. B 520,398 (2001) [arXiv:hep-th/0109051]; M. Matone, L. Mazzucato, I. Oda, D. Sorokin, M. Tonin, Nucl. Phys. B 639, 182 (2002) [arXiv:hep-th/0206104]MATHMathSciNetCrossRefADSGoogle Scholar
  48. 48.
    Y. Aisaka, Y. Kazama, JHEP 0505, 046 (2005) [arXiv:hep-th/0502208]MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    N. Berkovits, P.S. Howe, Nucl. Phys. B 635, 75 (2002) [arXiv:hep-th/0112160]MATHMathSciNetCrossRefADSGoogle Scholar
  50. 50.
    P.A. Grassi, L. Tamassia, JHEP 0407, 071 (2004) [arXiv:hep-th/0405072]MathSciNetCrossRefADSGoogle Scholar
  51. 51.
    M. Hatsuda, S. Iso, H. Umetsu, Nucl. Phys. B 671, 217 (2003) [arXiv:hep-th/0306251]MATHMathSciNetCrossRefADSGoogle Scholar
  52. 52.
    N. Berkovits, C. Vafa, E. Witten, JHEP 9903, 018 (1999) [arXiv:hep-th/9902098]MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    N. Berkovits, O. Chandia, Nucl. Phys. B 596, 185 (2001) [arXiv:hep-th/0009168]MATHMathSciNetCrossRefADSGoogle Scholar
  54. 54.
    N. Berkovits, JHEP 0204, 037 (2002) [arXiv:hep-th/0203248]MathSciNetCrossRefADSGoogle Scholar
  55. 55.
    R.R. Metsaev, Nucl. Phys. B 625, 70 (2002) [arXiv:hep-th/0112044]MATHMathSciNetCrossRefADSGoogle Scholar
  56. 56.
    R.R. Metsaev, A.A. Tseytlin, Phys. Rev. D 65, 126004 (2002) [arXiv:hep-th/0202109]CrossRefADSGoogle Scholar
  57. 57.
    M. Aganagic, C. Popescu, J.H. Schwarz, Nucl. Phys. B 495, 99 (1997) [arXiv:hep-th/9612080]MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Centro Studi e Ricerche E. FermiCompendio ViminaleRomaItaly

Personalised recommendations