Skip to main content
Log in

New realizations of Lie algebra kappa-deformed Euclidean space

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

We study Lie algebra κ-deformed Euclidean space with undeformed rotation algebra SOa(n) and commuting vectorlike derivatives. Infinitely many realizations in terms of commuting coordinates are constructed and a corresponding star product is found for each of them. The κ-deformed noncommutative space of the Lie algebra type with undeformed Poincaré algebra and with the corresponding deformed coalgebra is constructed in a unified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331, 39 (1994); Commun. Math. Phys. 172, 187 (1995) [hep-th/0303037]

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Seiberg, E. Witten, JHEP 09, 032 (1999) [hep-th/9908142]; J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003) [hep-th/0302078]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) [hep-th/0106048]

    Article  ADS  Google Scholar 

  4. R.J. Szabo, Phys. Rept. 378, 207 (2003) [hep-th/0109162]

    Article  MATH  ADS  Google Scholar 

  5. P. Aschieri, B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 651, 45 (2003) [hep-th/0205214]; P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp, J. Wess, Class. Quant. Grav. 22, 3511 (2005) [hep-th/0504183]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. J. Lukierski, H. Ruegg, Phys. Lett. B 329, 189 (1994) [hep- th/9310117]

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994) [hep-th/9404107]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P. Kosiński, P. Maślanka, hep-th/9411033

  11. K. Kosiński, J. Lukierski , P. Maślanka, Phys. Rev. D 62, 025004 (2000) [hep-th/9902037]

    Article  MathSciNet  ADS  Google Scholar 

  12. K. Kosiński, J. Lukierski, P. Maślanka, Czech. J. Phys. 50, 1283 (2000) [hep-th/0009120]

    Article  ADS  MATH  Google Scholar 

  13. P. Kosiński, J. Lukierski, P. Maślanka, A. Sitarz, hep-th/ 0307038

  14. G. Amelino-Camelia, M. Arzano, Phys. Rev. D 65, 084044 (2002) [hep-th/0105120]

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Amelino-Camelia, F. D’Andrea, G. Mandanici, JCAP 0309, 006 (2003) [hep-th/0211022]

    ADS  Google Scholar 

  16. M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Eur. Phys. C 31, 129 (2003) [hep-th/0307149]

    Article  ADS  MATH  Google Scholar 

  17. M. Dimitrijević, F. Meyer, L. Möller, J. Wess, Eur. Phys. J. C 36, 117 (2004) [hep-th/0310116]

    Article  ADS  Google Scholar 

  18. M. Dimitrijević, L. Möller, E. Tsouchnika, J. Phys. A hep-th/0404224

  19. D. Bonatsos, C. Daskaloyannis, Phys. Lett. B 307, 100 (1993); S. Meljanac, M. Mileković, S. Pallua, Phys. Lett. B 328, 55 (1994) [hep-th/9404039]

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Meljanac, M. Mileković, Int. J. Mod. Phys. A 11, 1391 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. S. Meljanac, A. Perica, Phys. A: Math. Gen. 27, 4737 (1994); S. Meljanac, A. Perica, Mod. Phys. Lett. A 9, 3293 (1994) [hep-th/9409180]; S. Meljanac, A. Perica, D. Svrtan, J. Phys. A 36, 6337 (2003) [math-ph/0304038]

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Meljanac, D. Svrtan, Determinants, math-ph/0304040; S. Meljanac, D. Svrtan, Math. Commum. 1, 1 (1996) [math-ph/0304039]

    MATH  MathSciNet  Google Scholar 

  23. V. Bardek, S. Meljanac, Eur. Phys. J. C 17, 539 (2000) [hep-th/0009099]; V. Bardek, L. Jonke, S. Meljanac, M. Mi- leković, Phys. Lett. B 531, 311 (2002) [hep-th/0107053]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. S. Meljanac, M. Mileković, M. Stojić, Eur. Phys. J. C 24, 331 (2002) [math-ph/0201061]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. L. Jonke, S. Meljanac, Phys. Lett. B 526, 149 (2002) [hep-th/0106135]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505, 267 (2001) [hep-th/0011172]; L. Jonke, S. Meljanac, Eur. Phys. J. C 29, 433 (2003) [hep-th/0210042]; I. Dadić, L. Jonke, S. Meljanac, Acta Phys. Slovaca 55, 149 (2005) [hep-th/0301066]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. J. Wess, Deformed coordinates spaces; Derivatives, Lecture given at the Balkan workshop BW2003, August 2003, Vrnjačka Banja, Serbia, hep-th/0408080

  28. M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604, 98 (2004) [hep-th/0408069]; M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005) [hep-th/0409096]

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Lukierski, M. Woronowicz, hep-th/0508083

  30. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995) [hep-th/9412167]; L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002) [hep-th/0201017]; I. Dadić, L. Jonke, S. Meljanac, Phys. Rev. D 67, 087701 (2003) [hep-th/0210264]

    Article  MathSciNet  ADS  Google Scholar 

  31. V. Kathotia, Int. J. Math. 11, 523 (2000), no. 4 [math.qa/ 9811174]

    MATH  MathSciNet  Google Scholar 

  32. L. Möller, JHEP 0512, 029 (2005) [hep-th/0409128]; A. Agostini, G. Amelino-Camelia, M. Arzano, F. D’Andrea, hep-th/0407227

    Article  Google Scholar 

  33. L. Freidel, E.R. Livine, “Ponzano–Regge model revisited. III: Feynman diagrams, effective field theory”, hep-th/0502106; L. Freidel, E.R. Livine, “Effective 3d quantum gravity, noncommutative quantum field theory”, hep-th/0512113

  34. S. Majid, J. Math. Phys. 46, 103520 (2005) [hep-th/ 0507271]

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Freidel, S. Majid, Noncommutative harmonic analysis, sampling theory, the Duflo map in 2+1 quantum gravity, hep-th/0601004

  36. N. Durov, S. Meljanac, A. Samsarov, Z. Škoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, math.RT/0604096

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Meljanac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meljanac, S., Stojić, M. New realizations of Lie algebra kappa-deformed Euclidean space. Eur. Phys. J. C 47, 531–539 (2006). https://doi.org/10.1140/epjc/s2006-02584-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02584-8

Keywords

Navigation