New realizations of Lie algebra kappa-deformed Euclidean space

Theoretical Physics

Abstract

We study Lie algebra κ-deformed Euclidean space with undeformed rotation algebra SOa(n) and commuting vectorlike derivatives. Infinitely many realizations in terms of commuting coordinates are constructed and a corresponding star product is found for each of them. The κ-deformed noncommutative space of the Lie algebra type with undeformed Poincaré algebra and with the corresponding deformed coalgebra is constructed in a unified way.

Keywords

Euclidean Space Hopf Algebra Invariant Operator Star Product Weyl Algebra 

References

  1. 1.
    S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331, 39 (1994); Commun. Math. Phys. 172, 187 (1995) [hep-th/0303037]MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    N. Seiberg, E. Witten, JHEP 09, 032 (1999) [hep-th/9908142]; J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003) [hep-th/0302078]MATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) [hep-th/0106048]CrossRefADSGoogle Scholar
  4. 4.
    R.J. Szabo, Phys. Rept. 378, 207 (2003) [hep-th/0109162]MATHCrossRefADSGoogle Scholar
  5. 5.
    P. Aschieri, B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 651, 45 (2003) [hep-th/0205214]; P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp, J. Wess, Class. Quant. Grav. 22, 3511 (2005) [hep-th/0504183]MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992)MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    J. Lukierski, H. Ruegg, Phys. Lett. B 329, 189 (1994) [hep- th/9310117]MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994) [hep-th/9404107]MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    P. Kosiński, P. Maślanka, hep-th/9411033Google Scholar
  11. 11.
    K. Kosiński, J. Lukierski , P. Maślanka, Phys. Rev. D 62, 025004 (2000) [hep-th/9902037]MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    K. Kosiński, J. Lukierski, P. Maślanka, Czech. J. Phys. 50, 1283 (2000) [hep-th/0009120]CrossRefADSMATHGoogle Scholar
  13. 13.
    P. Kosiński, J. Lukierski, P. Maślanka, A. Sitarz, hep-th/ 0307038Google Scholar
  14. 14.
    G. Amelino-Camelia, M. Arzano, Phys. Rev. D 65, 084044 (2002) [hep-th/0105120]MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    G. Amelino-Camelia, F. D’Andrea, G. Mandanici, JCAP 0309, 006 (2003) [hep-th/0211022]ADSGoogle Scholar
  16. 16.
    M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Eur. Phys. C 31, 129 (2003) [hep-th/0307149]CrossRefADSMATHGoogle Scholar
  17. 17.
    M. Dimitrijević, F. Meyer, L. Möller, J. Wess, Eur. Phys. J. C 36, 117 (2004) [hep-th/0310116]ADSCrossRefGoogle Scholar
  18. 18.
    M. Dimitrijević, L. Möller, E. Tsouchnika, J. Phys. A hep-th/0404224Google Scholar
  19. 19.
    D. Bonatsos, C. Daskaloyannis, Phys. Lett. B 307, 100 (1993); S. Meljanac, M. Mileković, S. Pallua, Phys. Lett. B 328, 55 (1994) [hep-th/9404039]MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    S. Meljanac, M. Mileković, Int. J. Mod. Phys. A 11, 1391 (1996)MATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    S. Meljanac, A. Perica, Phys. A: Math. Gen. 27, 4737 (1994); S. Meljanac, A. Perica, Mod. Phys. Lett. A 9, 3293 (1994) [hep-th/9409180]; S. Meljanac, A. Perica, D. Svrtan, J. Phys. A 36, 6337 (2003) [math-ph/0304038]MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    S. Meljanac, D. Svrtan, Determinants, math-ph/0304040; S. Meljanac, D. Svrtan, Math. Commum. 1, 1 (1996) [math-ph/0304039]MATHMathSciNetGoogle Scholar
  23. 23.
    V. Bardek, S. Meljanac, Eur. Phys. J. C 17, 539 (2000) [hep-th/0009099]; V. Bardek, L. Jonke, S. Meljanac, M. Mi- leković, Phys. Lett. B 531, 311 (2002) [hep-th/0107053]MathSciNetCrossRefADSMATHGoogle Scholar
  24. 24.
    S. Meljanac, M. Mileković, M. Stojić, Eur. Phys. J. C 24, 331 (2002) [math-ph/0201061]MATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    L. Jonke, S. Meljanac, Phys. Lett. B 526, 149 (2002) [hep-th/0106135]MATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505, 267 (2001) [hep-th/0011172]; L. Jonke, S. Meljanac, Eur. Phys. J. C 29, 433 (2003) [hep-th/0210042]; I. Dadić, L. Jonke, S. Meljanac, Acta Phys. Slovaca 55, 149 (2005) [hep-th/0301066]MATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    J. Wess, Deformed coordinates spaces; Derivatives, Lecture given at the Balkan workshop BW2003, August 2003, Vrnjačka Banja, Serbia, hep-th/0408080Google Scholar
  28. 28.
    M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604, 98 (2004) [hep-th/0408069]; M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005) [hep-th/0409096]MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    J. Lukierski, M. Woronowicz, hep-th/0508083Google Scholar
  30. 30.
    A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995) [hep-th/9412167]; L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002) [hep-th/0201017]; I. Dadić, L. Jonke, S. Meljanac, Phys. Rev. D 67, 087701 (2003) [hep-th/0210264]MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    V. Kathotia, Int. J. Math. 11, 523 (2000), no. 4 [math.qa/ 9811174]MATHMathSciNetGoogle Scholar
  32. 32.
    L. Möller, JHEP 0512, 029 (2005) [hep-th/0409128]; A. Agostini, G. Amelino-Camelia, M. Arzano, F. D’Andrea, hep-th/0407227CrossRefGoogle Scholar
  33. 33.
    L. Freidel, E.R. Livine, “Ponzano–Regge model revisited. III: Feynman diagrams, effective field theory”, hep-th/0502106; L. Freidel, E.R. Livine, “Effective 3d quantum gravity, noncommutative quantum field theory”, hep-th/0512113Google Scholar
  34. 34.
    S. Majid, J. Math. Phys. 46, 103520 (2005) [hep-th/ 0507271]MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    L. Freidel, S. Majid, Noncommutative harmonic analysis, sampling theory, the Duflo map in 2+1 quantum gravity, hep-th/0601004Google Scholar
  36. 36.
    N. Durov, S. Meljanac, A. Samsarov, Z. Škoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, math.RT/0604096Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Rudjer Bošković InstituteZagrebCroatia

Personalised recommendations