Advertisement

Superfield Lax formalism of supersymmetric sigma model on symmetric spaces

Theoretical Physics

Abstract

We present a superfield Lax formalism of the superspace sigma model based on the target space \(\mathcal{G}/\mathcal{H}\) and show that a one-parameter family of flat superfield connections exists if the target space \(\mathcal{G}/\mathcal{H}\) is a symmetric space. The formalism has been related to the existence of an infinite family of local and non-local superfield conserved quantities. A few examples have been given to illustrate the results.

Keywords

Field Theory Elementary Particle Quantum Field Theory Symmetric Space Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Evans, A.J. Mountain, Phys. Lett. B 483, 290 (2000)MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    N.J. MacKay, C.A.S. Young, Phys. Lett. B 588, 221 (2004)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    J.M. Evans, D. Kagan, N.J. MacKay, C.A.S. Young, JHEP 01, 020 (2005)CrossRefADSGoogle Scholar
  4. 4.
    J.M. Evans, C.A.S. Young, Nucl. Phys. B 717, 327 (2005)CrossRefADSGoogle Scholar
  5. 5.
    I. Bena, J. Polchinski, R. Roiban, Phys. Rev. D 69, 046002 (2004)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    G. Arutyunov, J. Russo, A.A. Tseytlin, Phys. Rev. D 69, 086009 (2004)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    B.C. Vallilo, JHEP 03, 037 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov,B. Zwiebach, Nucl. Phys. B 567, 61 (2000)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Dolan, C.R. Nappi, E. Witten, JHEP 010, 017 (2003)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    B. Chen, Y.-L. He, P. Zhang, X.-C. Song, Phys. Rev. D 71, 086007 (2005)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    V.A. Kazakov, A. Marshakov, K. Zarembo, JHEP 0405, 024 (2004)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    G. Mandal, N.V. Suryanarayana, S.R. Wadia, Phys. Lett. B 543, 81 (2002)MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    L.F. Alday, G. Arutyunov, A.A. Tseytlin, JHEP 0507, 002 (2004)ADSGoogle Scholar
  14. 14.
    H. Eichenherr, M. Forger, Nucl. Phys. B 155, 381 (1979)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    K. Scheler, Z. Phys. C 6, 365 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.-C. Lee, Phys. Lett. B 158, 413 (1985)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J.H. Schwarz, Nucl. Phys. B 447, 137 (1995)MATHCrossRefADSGoogle Scholar
  18. 18.
    S. Helgason, Differential geometry and symmetric spaces (Academic Press, New York, 1962)Google Scholar
  19. 19.
    S. Kobayashi, K. Nomizu, Foundation of differential geometry, Vol. 2 (Interscience, New York 1969)Google Scholar
  20. 20.
    K. Pohlmeyer, Comm. Math. Phys. 46, 207 (1976)MATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    M. Lüscher, K. Pohlmeyer, Nucl. Phys. B 137, 46 (1978)CrossRefADSGoogle Scholar
  22. 22.
    E. Brézin, C. Itzykson, J. Zinn-Justin, J.-B. Zuber, Phys. Lett. B 82, 442 (1979)CrossRefADSGoogle Scholar
  23. 23.
    E. Abdalla, M.C.B. Abdalla, Phys. Lett. B 152, 59 (1985)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    D. Bernard, Phys. Lett. B 279, 78 (1992)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    N.J. MacKay, Phys. Lett. B 281, 90 (1992)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    E. Corrigan, C.K. Zachos, Phys. Lett. B 88, 273 (1979)CrossRefADSGoogle Scholar
  27. 27.
    T.L. Curtright, Phys. Lett. B 88, 276 (1979)CrossRefADSGoogle Scholar
  28. 28.
    T.L. Curtright, C.K. Zachos, Phys. Rev. D 21, 411 (1980)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    J.F. Schonfeld, Nucl. Phys. B 169, 49 (1980)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Z. Popowicz, L.L. Chau Wang, Phys. Lett. B 98, 253 (1981)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    L.L. Chau, H.C. Yen, Phys. Lett. B 177, 368 (1986)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    E. Abdalla, M. Forger, Commun. Math. Phys. 104, 123 (1986)MATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    T.L. Curtright, C.K. Zachos, Nucl. Phys. B 402, 604 (1993)MATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    J.M. Evans, M. Hassan, N.J. MacKay, A.J. Mountain, Nucl. Phys. B 561, 385 (1999)MATHCrossRefADSGoogle Scholar
  35. 35.
    J.M. Evans, M. Hassan, N.J. MacKay, A.J. Mountain, Nucl. Phys. B 580, 605 (2000)MATHCrossRefADSGoogle Scholar
  36. 36.
    U. Saleem, M. Hassan, Eur. Phys. J. C 38, 521 (2005)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations