Above barrier Dirac multiple scattering and resonances

  • S. De Leo
  • P.P. Rotelli
Theoretical Physics


We extend an above barrier analysis made with the Schrödinger equation to the Dirac equation. We demonstrate the perfect agreement between the barrier results and back to back steps. This implies the existence of multiple (indeed infinite) reflected and transmitted wave packets. These packets may be well separated in space or partially overlap. In the latter case interference effects can occur. For the extreme case of total overlap we encounter resonances. The conditions under which resonance phenomena can be observed is discussed and illustrated by numerical calculations.


Field Theory Elementary Particle Numerical Calculation Quantum Field Theory Extreme Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Klein, Z. Phys. 53, 157 (1929)CrossRefADSMATHGoogle Scholar
  2. 2.
    A. Hansen, F. Ravndal, Phys. Scr. 23, 1036 (1981)ADSGoogle Scholar
  3. 3.
    R.K. Su, G. Siu, X. Chou, J. Phys. A 26, 1001 (1993)CrossRefADSGoogle Scholar
  4. 4.
    B.R. Holstein, Am. J. Phys. 66, 507 (1998)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    H. Nitta, T. Kudo, H. Minowa, Am. J. Phys. 67, 966 (1999)CrossRefADSGoogle Scholar
  6. 6.
    P. Krekora, Q. Su, R. Grobe, Phys. Rev. Lett. 92, 040406 (2004)CrossRefADSGoogle Scholar
  7. 7.
    P. Krekora, Q. Su, R. Grobe, Phys. Rev. A 63, 032107 (2001); ibid. 64, 022105 (2001)CrossRefADSGoogle Scholar
  8. 8.
    V. Petrillo, D. Janner, Phys. Rev. A 67, 012110 (2003)CrossRefADSGoogle Scholar
  9. 9.
    T.E. Hartman, J. Appl. Phys. 33, 3427 (1962)CrossRefGoogle Scholar
  10. 10.
    V.S. Olkhovsky, E. Recami, Phys. Rep. 214, 340 (1992)CrossRefADSGoogle Scholar
  11. 11.
    S. De Leo, P. Rotelli, Phys. Lett. A 342, 294 (2005)CrossRefADSGoogle Scholar
  12. 12.
    A. Bernardini, S. De Leo, P. Rotelli, Mod. Phys. Lett. A 19, 2717 (2004)CrossRefMATHGoogle Scholar
  13. 13.
    A. Anderson, Am. J. Phys. 57, 230 (1989)CrossRefADSGoogle Scholar
  14. 14.
    M. Thomson, B.M.J. McKellar, Am. J. Phys. 59, 340 (1991)CrossRefADSGoogle Scholar
  15. 15.
    L. Kelvin, Phil. Mag. 23, 252 (1887)Google Scholar
  16. 16.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris 1977)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Applied MathematicsState University of CampinasCampinasBrazil
  2. 2.Department of Physics, INFNUniversity of LecceLecceItaly

Personalised recommendations