A remark on the motivic Galois group and the quantum coadjoint action

Theoretical Physics


It has been suggested that the Grothendieck–Teichmüller group GT should act on the Duflo isomorphism of su(2), but the corresponding realization of GT turned out to be trivial. We show that a solvable quotient of the motivic Galois group – which is supposed to agree with GT – is closely related to the quantum coadjoint action on \(U_q(sl_2)\) for q a root of unity, i.e. in the quantum group case one has a nontrivial realization of a quotient of the motivic Galois group. From a discussion of the algebraic properties of this realization we conclude that in more general cases than \(U_q(sl_2)\) it should be related to a quantum version of the motivic Galois group. Finally, we discuss the relation of our construction to quantum field and string theory and explain what we believe to be the ‘physical reason’ behind this relation between the motivic Galois group and the quantum coadjoint action. This might be a starting point for the generalization of our construction to more involved examples.


Field Theory Elementary Particle Quantum Field Theory String Theory Quantum Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.Y. Alekseev, A. Recknagel, V. Schomerus, hep-th/9908040v2Google Scholar
  2. 2.
    R. Bezrukavnikov, math.RT/0403003Google Scholar
  3. 3.
    M. Bianchi, Y.S. Stanev, hep-th/9711069Google Scholar
  4. 4.
    C.G. Callan, J.A. Harvey, A. Strominger, Nucl. Phys. B 359, 611 (1991)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    V. Chari, A. Pressley, Quantum Groups (Cambridge University Press, Cambridge, 1994)Google Scholar
  6. 6.
    T. Deguchi, K. Fabricius, B.M. McCoy, J. Statist. Phys. 102, 701 (2001) [cond-mat/9912141]CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    C. De Concini, V. Kac, Prog. Math. 92, 471 (1990)MATHGoogle Scholar
  8. 8.
    C. De Concini, V. Kac, C. Procesi, J. Am. Math. Soc. 5, 151 (1992)CrossRefMATHGoogle Scholar
  9. 9.
    V.G. Drinfeld, Leningr. Math. J. 2, 829 (1991)MATHMathSciNetGoogle Scholar
  10. 10.
    M. Duflo, C. R. Acad. Sci. A 269, 437 (1969)MathSciNetGoogle Scholar
  11. 11.
    R. Dijkgraaf, E. Verlinde, H. Verlinde, Nucl. Phys. B 352, 59 (1991)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    S. Förste, D. Ghoshal, S. Panda, Phys. Lett. B 411, 46 (1997) [hep-th/9706057]CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    K. Fabricius, B.M. McCoy, J. Statist. Phys. 103, 647 (2001) [cond-mat/0009279]CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    K. Fabricius, B.M. McCoy, J. Statist. Phys. 104, 573 (2001) [cond-mat/0012501]CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    H. Grosse, J. Madore, H. Steinacker, hep-th/0005273v2Google Scholar
  16. 16.
    H. Grosse, K.-G. Schlesinger, hep-th/0412161Google Scholar
  17. 17.
    C. Hofman, W.K. Ma, hep-th/0102201v3Google Scholar
  18. 18.
    Y. Ihara, Some Problems on Three-point Ramifications and Associated Large Galois Representations (Adv. Stud. Pure Math. bf 12) (North-Holland, Amsterdam and New York, 1987), pp. 173–188Google Scholar
  19. 19.
    Y. Ihara, The Galois Representations Arising From ℙ1-{0,1,∞} and Tate Twists of Even Degree, Galois Groups Over ℚ (Math. Sci. Res. Inst. Publ. 16) (Springer, Berlin New York, 1989), pp. 299–313Google Scholar
  20. 20.
    A. Iqbal, N. Nekrasov, A. Okounkov, C. Vafa, hep-th/ 0312022Google Scholar
  21. 21.
    M. Kontsevich, alg-geom 9411018Google Scholar
  22. 22.
    M. Kontsevich, math/9709180Google Scholar
  23. 23.
    M. Kontsevich, math.QA/9904055Google Scholar
  24. 24.
    C. Korff, math-ph/0302002v2Google Scholar
  25. 25.
    M. Kontsevich, Y. Soibelman, math.QA/0001151v2Google Scholar
  26. 26.
    A. Klymik, K. Schmüdgen, Quantum Groups and Their Representations (Springer, Berlin Heidelberg, 1997)Google Scholar
  27. 27.
    G. Lusztig, Introduction to quantum groups (Birkhäuser, Boston, 1993)Google Scholar
  28. 28.
    J. Madore, Class. Quantum Grav. 9, 69 (1992)CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    A. Okounkov, N. Reshetikhin, C. Vafa, hep-th/0309208Google Scholar
  30. 30.
    S.-J. Rey, Phys. Rev. D 43, 526 (1991)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    K.-G. Schlesinger, J. Phys. A: Math. Gen. 35, 10189 (2002) [math.QA/0104275]CrossRefADSMATHMathSciNetGoogle Scholar
  32. 32.
    E. Witten, Mirror manifolds and topological field theory. In Essays on Mirror Manifolds, ed. by S.T. Yau (International Press, Hong Kong, 1991)Google Scholar
  33. 33.
    E. Witten, Surv. Differ. Geom. 1, 243 (1991)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of ViennaViennaAustria

Personalised recommendations