Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD

  • P.D. Draggiotis
  • R.H.P. Kleiss
  • A. Lazopoulos
  • C.G. Papadopoulos
Theoretical Physics

Abstract

We present a proof of the Britto–Cachazo–Feng–Witten tree-level recursion relation for gluon amplitudes in QCD, based on a direct equivalence between BCFW decompositions and Feynman diagrams. We demonstrate that this equivalence can be made explicit when working in a convenient gauge. We exhibit that gauge invariance and the particular structure of Yang–Mills vertices guarantee the validity of the BCFW construction.

Keywords

Field Theory Elementary Particle Quantum Field Theory Feynman Diagram Recursion Relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, Commun. Math. Phys. 252, 189 (2004) [hep-th/0312171]MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    R. Britto, F. Cachazo, B. Feng, Nucl. Phys. B 715, 499 (2005) [hep- th/0412308]MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    G. Georgiou, V.V. Khoze, JHEP 0405, 070 (2004) [hep-th/0404072]; G. Georgiou, E.W.N. Glover, V.V. Khoze, JHEP 0407, 048 (2004) [hep- th/0407027]; D.A. Kosower, Phys. Rev. D 71, 045007 (2005) [hep-th/0406175]MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    J.B. Wu, C.J. Zhu, JHEP 0409, 063 (2004) [hep-th/ 0406146]; J.B. Wu, C.J. Zhu, JHEP 0407, 032 (2004) [hep-th/0406085]; C.J. Zhu, JHEP 0404, 032 (2004) [hep-th/0403115]CrossRefADSGoogle Scholar
  5. 5.
    L.J. Dixon, E.W.N. Glover, V.V. Khoze, JHEP 0412, 015 (2004) [hep- th/0411092]; Z. Bern, D. Forde, D.A. Kosower, P. Mastroglia, hep-ph/0412167; S.D. Badger, E.W.N. Glover, V.V. Khoze, JHEP 0503, 023 (2005) [hep-th/0412275]MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    A. Brandhuber, B. Spence, G. Travaglini, Nucl. Phys. B 706, 150 (2005) [hep-th/0407214]; Z. Bern, L. Dixon,D.A. Kosower, Phys. Rev. D 71, 105013 (2005) [hep-th/0501240]MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    R. Britto, F. Cachazo, B. Feng, E. Witten, Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052]CrossRefADSGoogle Scholar
  8. 8.
    F.A. Berends, W. Giele, Nucl. Phys. B 294, 700 (1987); M.L. Mangano, S.J. Parke, Z. Xu, Nucl. Phys. B 298, 653 (1988)CrossRefADSGoogle Scholar
  9. 9.
    L. Dixon, Boulder TASI 95, 539 [hep-ph/9601359]Google Scholar
  10. 10.
    R. Kleiss, W.J. Stirling, Nucl. Phys. B 262, 235 (1985)CrossRefADSGoogle Scholar
  11. 11.
    F.A. Berends, W. Giele, Nucl. Phys. B 294, 700 (1987)CrossRefADSGoogle Scholar
  12. 12.
    G. ’t Hooft, Nucl. Phys. B 538, 389 (1999) [hep-th/9808113]MATHCrossRefADSGoogle Scholar
  13. 13.
    E.N. Argyres, R.H.P. Kleiss, C.G. Papadopoulos, Nucl. Phys. B 391, 42 (1993)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    P. Draggiotis, R.H.P. Kleiss, C.G. Papadopoulos, Phys. Lett. B 439, 157 (1998) [hep-ph/9807207]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P.D. Draggiotis
    • 1
    • 3
  • R.H.P. Kleiss
    • 2
  • A. Lazopoulos
    • 2
  • C.G. Papadopoulos
    • 3
  1. 1.Physics Department, Nuclear & Particle Physics SectionUniversity of AthensAthensGreece
  2. 2.IMAPP, Institute of Mathematics, Astrophysics and Particle PhysicsRadboud UniversityNijmegenThe Netherlands
  3. 3.Institute of Nuclear PhysicsNCSR “Demokritos”AthensGreece

Personalised recommendations